ExamGecko
Question list
Search
Search

List of questions

Search

Related questions











Question 26 - Professional Machine Learning Engineer discussion

Report
Export

You are an ML engineer in the contact center of a large enterprise. You need to build a sentiment analysis tool that predicts customer sentiment from recorded phone conversations. You need to identify the best approach to building a model while ensuring that the gender, age, and cultural differences of the customers who called the contact center do not impact any stage of the model development pipeline and results. What should you do?

A.
Extract sentiment directly from the voice recordings
Answers
A.
Extract sentiment directly from the voice recordings
B.
Convert the speech to text and build a model based on the words
Answers
B.
Convert the speech to text and build a model based on the words
C.
Convert the speech to text and extract sentiments based on the sentences
Answers
C.
Convert the speech to text and extract sentiments based on the sentences
D.
Convert the speech to text and extract sentiment using syntactical analysis
Answers
D.
Convert the speech to text and extract sentiment using syntactical analysis
Suggested answer: C

Explanation:

Sentiment analysis is the process of identifying and extracting the emotions, opinions, and attitudes expressed in a text or speech. Sentiment analysis can help businesses understand their customers' feedback, satisfaction, and preferences. There are different approaches to building a sentiment analysis tool, depending on the input data and the output format. Some of the common approaches are:

Extracting sentiment directly from the voice recordings: This approach involves using acoustic features, such as pitch, intensity, and prosody, to infer the sentiment of the speaker. This approach can capture the nuances and subtleties of the vocal expression, but it also requires a large and diverse dataset of labeled voice recordings, which may not be easily available or accessible. Moreover, this approach may not account for the semantic and contextual information of the speech, which can also affect the sentiment.

Converting the speech to text and building a model based on the words: This approach involves using automatic speech recognition (ASR) to transcribe the voice recordings into text, and then using lexical features, such as word frequency, polarity, and valence, to infer the sentiment of the text. This approach can leverage the existing text-based sentiment analysis models and tools, but it also introduces some challenges, such as the accuracy and reliability of the ASR system, the ambiguity and variability of the natural language, and the loss of the acoustic information of the speech.

Converting the speech to text and extracting sentiments based on the sentences: This approach involves using ASR to transcribe the voice recordings into text, and then using syntactic and semantic features, such as sentence structure, word order, and meaning, to infer the sentiment of the text. This approach can capture the higher-level and complex aspects of the natural language, such as negation, sarcasm, and irony, which can affect the sentiment. However, this approach also requires more sophisticated and advanced natural language processing techniques, such as parsing, dependency analysis, and semantic role labeling, which may not be readily available or easy to implement.

Converting the speech to text and extracting sentiment using syntactical analysis: This approach involves using ASR to transcribe the voice recordings into text, and then using syntactical analysis, such as part-of-speech tagging, phrase chunking, and constituency parsing, to infer the sentiment of the text. This approach can identify the grammatical and structural elements of the natural language, such as nouns, verbs, adjectives, and clauses, which can indicate the sentiment. However, this approach may not account for the pragmatic and contextual information of the speech, such as the speaker's intention, tone, and situation, which can also influence the sentiment.

For the use case of building a sentiment analysis tool that predicts customer sentiment from recorded phone conversations, the best approach is to convert the speech to text and extract sentiments based on the sentences. This approach can balance the trade-offs between the accuracy, complexity, and feasibility of the sentiment analysis tool, while ensuring that the gender, age, and cultural differences of the customers who called the contact center do not impact any stage of the model development pipeline and results. This approach can also handle different types and levels of sentiment, such as polarity (positive, negative, or neutral), intensity (strong or weak), and emotion (anger, joy, sadness, etc.). Therefore, converting the speech to text and extracting sentiments based on the sentences is the best approach for this use case.

asked 18/09/2024
Bruce Tablada
33 questions
User
Your answer:
0 comments
Sorted by

Leave a comment first