ExamGecko
Question list
Search
Search

List of questions

Search

Related questions











Question 230 - Professional Machine Learning Engineer discussion

Report
Export

You are developing a model to predict whether a failure will occur in a critical machine part. You have a dataset consisting of a multivariate time series and labels indicating whether the machine part failed You recently started experimenting with a few different preprocessing and modeling approaches in a Vertex Al Workbench notebook. You want to log data and track artifacts from each run. How should you set up your experiments?

A.
Answers
A.
B.
Answers
B.
C.
Answers
C.
D.
Answers
D.
Suggested answer: A

Explanation:

The option A is the most suitable solution for logging data and tracking artifacts from each run of a model development experiment in a Vertex AI Workbench notebook. Vertex AI Workbench is a service that allows you to create and run interactive notebooks on Google Cloud. You can use Vertex AI Workbench to experiment with different preprocessing and modeling approaches for your time series prediction problem. You can also use the Vertex AI TensorBoard instance and the Vertex AI SDK to create an experiment and associate the TensorBoard instance. TensorBoard is a tool that allows you to visualize and monitor the metrics and artifacts of your ML experiments. You can use the Vertex AI SDK to create an experiment object, which is a logical grouping of runs that share a common objective. You can also use the Vertex AI SDK to associate the experiment object with a TensorBoard instance, which is a managed service that hosts a TensorBoard web app. By using the Vertex AI TensorBoard instance and the Vertex AI SDK, you can easily set up and manage your experiments, and access the TensorBoard web app from the Vertex AI console. You can also use the log_time_series_metrics function and the log_metrics function to log data and track artifacts from each run. The log_time_series_metrics function is a function that allows you to log the time series data, such as the multivariate time series and the labels, to the TensorBoard instance. The log_metrics function is a function that allows you to log the scalar metrics, such as the loss values, to the TensorBoard instance. By using these functions, you can record the data and artifacts from each run of your experiment, and compare them in the TensorBoard web app. You can also use the TensorBoard web app to visualize the data and artifacts, such as the time series plots, the scalar charts, the histograms, and the distributions. By using the Vertex AI TensorBoard instance, the Vertex AI SDK, and the log functions, you can log data and track artifacts from each run of your experiment in a Vertex AI Workbench notebook.Reference:

Vertex AI Workbench documentation

Vertex AI TensorBoard documentation

Vertex AI SDK documentation

log_time_series_metrics function documentation

log_metrics function documentation

[Preparing for Google Cloud Certification: Machine Learning Engineer Professional Certificate]

asked 18/09/2024
luis gilberto correa betancur
44 questions
User
Your answer:
0 comments
Sorted by

Leave a comment first