ExamGecko
Question list
Search
Search

List of questions

Search

Related questions











Question 53 - MLS-C01 discussion

Report
Export

A company is building a demand forecasting model based on machine learning (ML). In the development stage, an ML specialist uses an Amazon SageMaker notebook to perform feature engineering during work hours that consumes low amounts of CPU and memory resources. A data engineer uses the same notebook to perform data preprocessing once a day on average that requires very high memory and completes in only 2 hours. The data preprocessing is not configured to use GPU. All the processes are running well on an ml.m5.4xlarge notebook instance.

The company receives an AWS Budgets alert that the billing for this month exceeds the allocated budget.

Which solution will result in the MOST cost savings?

A.
Change the notebook instance type to a memory optimized instance with the same vCPU number as the ml.m5.4xlarge instance has. Stop the notebook when it is not in use. Run both data preprocessing and feature engineering development on that instance.
Answers
A.
Change the notebook instance type to a memory optimized instance with the same vCPU number as the ml.m5.4xlarge instance has. Stop the notebook when it is not in use. Run both data preprocessing and feature engineering development on that instance.
B.
Keep the notebook instance type and size the same. Stop the notebook when it is not in use. Run data preprocessing on a P3 instance type with the same memory as the ml.m5.4xlarge instance by using Amazon SageMaker Processing.
Answers
B.
Keep the notebook instance type and size the same. Stop the notebook when it is not in use. Run data preprocessing on a P3 instance type with the same memory as the ml.m5.4xlarge instance by using Amazon SageMaker Processing.
C.
Change the notebook instance type to a smaller general-purpose instance. Stop the notebook when it is not in use. Run data preprocessing on an ml. r5 instance with the same memory size as the ml.m5.4xlarge instance by using Amazon SageMaker Processing.
Answers
C.
Change the notebook instance type to a smaller general-purpose instance. Stop the notebook when it is not in use. Run data preprocessing on an ml. r5 instance with the same memory size as the ml.m5.4xlarge instance by using Amazon SageMaker Processing.
D.
Change the notebook instance type to a smaller general-purpose instance. Stop the notebook when it is not in use. Run data preprocessing on an R5 instance with the same memory size as the ml.m5.4xlarge instance by using the Reserved Instance option.
Answers
D.
Change the notebook instance type to a smaller general-purpose instance. Stop the notebook when it is not in use. Run data preprocessing on an R5 instance with the same memory size as the ml.m5.4xlarge instance by using the Reserved Instance option.
Suggested answer: C

Explanation:

The best solution to reduce the cost of the notebook instance and the data preprocessing job is to change the notebook instance type to a smaller general-purpose instance, stop the notebook when it is not in use, and run data preprocessing on an ml.r5 instance with the same memory size as the ml.m5.4xlarge instance by using Amazon SageMaker Processing. This solution will result in the most cost savings because:

Changing the notebook instance type to a smaller general-purpose instance will reduce the hourly cost of running the notebook, since the feature engineering development does not require high CPU and memory resources.For example, an ml.t3.medium instance costs $0.0464 per hour, while an ml.m5.4xlarge instance costs $0.888 per hour1.

Stopping the notebook when it is not in use will also reduce the cost, since the notebook will only incur charges when it is running.For example, if the notebook is used for 8 hours per day, 5 days per week, then stopping it when it is not in use will save about 76% of the monthly cost compared to leaving it running all the time2.

Running data preprocessing on an ml.r5 instance with the same memory size as the ml.m5.4xlarge instance by using Amazon SageMaker Processing will reduce the cost of the data preprocessing job, since the ml.r5 instance is optimized for memory-intensive workloads and has a lower cost per GB of memory than the ml.m5 instance.For example, an ml.r5.4xlarge instance has 128 GB of memory and costs $1.008 per hour, while an ml.m5.4xlarge instance has 64 GB of memory and costs $0.888 per hour1. Therefore, the ml.r5.4xlarge instance can process the same amount of data in half the time and at a lower cost than the ml.m5.4xlarge instance. Moreover, using Amazon SageMaker Processing will allow the data preprocessing job to run on a separate, fully managed infrastructure that can be scaled up or down as needed, without affecting the notebook instance.

The other options are not as effective as option C for the following reasons:

Option A is not optimal because changing the notebook instance type to a memory optimized instance with the same vCPU number as the ml.m5.4xlarge instance has will not reduce the cost of the notebook, since the memory optimized instances have a higher cost per vCPU than the general-purpose instances.For example, an ml.r5.4xlarge instance has 16 vCPUs and costs $1.008 per hour, while an ml.m5.4xlarge instance has 16 vCPUs and costs $0.888 per hour1. Moreover, running both data preprocessing and feature engineering development on the same instance will not take advantage of the scalability and flexibility of Amazon SageMaker Processing.

Option B is not suitable because running data preprocessing on a P3 instance type with the same memory as the ml.m5.4xlarge instance by using Amazon SageMaker Processing will not reduce the cost of the data preprocessing job, since the P3 instance type is optimized for GPU-based workloads and has a higher cost per GB of memory than the ml.m5 or ml.r5 instance types.For example, an ml.p3.2xlarge instance has 61 GB of memory and costs $3.06 per hour, while an ml.m5.4xlarge instance has 64 GB of memory and costs $0.888 per hour1. Moreover, the data preprocessing job does not require GPU, so using a P3 instance type will be wasteful and inefficient.

Option D is not feasible because running data preprocessing on an R5 instance with the same memory size as the ml.m5.4xlarge instance by using the Reserved Instance option will not reduce the cost of the data preprocessing job, since the Reserved Instance option requires a commitment to a consistent amount of usage for a period of 1 or 3 years3. However, the data preprocessing job only runs once a day on average and completes in only 2 hours, so it does not have a consistent or predictable usage pattern. Therefore, using the Reserved Instance option will not provide any cost savings and may incur additional charges for unused capacity.

References:

Amazon SageMaker Pricing

Manage Notebook Instances - Amazon SageMaker

Amazon EC2 Pricing - Reserved Instances

asked 16/09/2024
stefano atzei
33 questions
User
Your answer:
0 comments
Sorted by

Leave a comment first