List of questions
Related questions
Question 93 - MLS-C01 discussion
A gaming company has launched an online game where people can start playing for free but they need to pay if they choose to use certain features The company needs to build an automated system to predict whether or not a new user will become a paid user within 1 year The company has gathered a labeled dataset from 1 million users
The training dataset consists of 1.000 positive samples (from users who ended up paying within 1 year) and 999.000 negative samples (from users who did not use any paid features) Each data sample consists of 200 features including user age, device, location, and play patterns
Using this dataset for training, the Data Science team trained a random forest model that converged with over 99% accuracy on the training set However, the prediction results on a test dataset were not satisfactory.
Which of the following approaches should the Data Science team take to mitigate this issue? (Select TWO.)
0 comments
Leave a comment first