ExamGecko
Question list
Search
Search

List of questions

Search

Related questions











Question 232 - MLS-C01 discussion

Report
Export

A retail company wants to build a recommendation system for the company's website. The system needs to provide recommendations for existing users and needs to base those recommendations on each user's past browsing history. The system also must filter out any items that the user previously purchased.

Which solution will meet these requirements with the LEAST development effort?

A.
Train a model by using a user-based collaborative filtering algorithm on Amazon SageMaker. Host the model on a SageMaker real-time endpoint. Configure an Amazon API Gateway API and an AWS Lambda function to handle real-time inference requests that the web application sends. Exclude the items that the user previously purchased from the results before sending the results back to the web application.
Answers
A.
Train a model by using a user-based collaborative filtering algorithm on Amazon SageMaker. Host the model on a SageMaker real-time endpoint. Configure an Amazon API Gateway API and an AWS Lambda function to handle real-time inference requests that the web application sends. Exclude the items that the user previously purchased from the results before sending the results back to the web application.
B.
Use an Amazon Personalize PERSONALIZED_RANKING recipe to train a model. Create a real-time filter to exclude items that the user previously purchased. Create and deploy a campaign on Amazon Personalize. Use the GetPersonalizedRanking API operation to get the real-time recommendations.
Answers
B.
Use an Amazon Personalize PERSONALIZED_RANKING recipe to train a model. Create a real-time filter to exclude items that the user previously purchased. Create and deploy a campaign on Amazon Personalize. Use the GetPersonalizedRanking API operation to get the real-time recommendations.
C.
Use an Amazon Personalize USER_ PERSONAL IZATION recipe to train a model Create a real-time filter to exclude items that the user previously purchased. Create and deploy a campaign on Amazon Personalize. Use the GetRecommendations API operation to get the real-time recommendations.
Answers
C.
Use an Amazon Personalize USER_ PERSONAL IZATION recipe to train a model Create a real-time filter to exclude items that the user previously purchased. Create and deploy a campaign on Amazon Personalize. Use the GetRecommendations API operation to get the real-time recommendations.
D.
Train a neural collaborative filtering model on Amazon SageMaker by using GPU instances. Host the model on a SageMaker real-time endpoint. Configure an Amazon API Gateway API and an AWS Lambda function to handle real-time inference requests that the web application sends. Exclude the items that the user previously purchased from the results before sending the results back to the web application.
Answers
D.
Train a neural collaborative filtering model on Amazon SageMaker by using GPU instances. Host the model on a SageMaker real-time endpoint. Configure an Amazon API Gateway API and an AWS Lambda function to handle real-time inference requests that the web application sends. Exclude the items that the user previously purchased from the results before sending the results back to the web application.
Suggested answer: C

Explanation:

Amazon Personalize is a fully managed machine learning service that makes it easy for developers to create personalized user experiences at scale. It uses the same recommender system technology that Amazon uses to create its own personalized recommendations. Amazon Personalize provides several pre-built recipes that can be used to train models for different use cases. The USER_PERSONALIZATION recipe is designed to provide personalized recommendations for existing users based on their past interactions with items. The PERSONALIZED_RANKING recipe is designed to re-rank a list of items for a user based on their preferences. The USER_PERSONALIZATION recipe is more suitable for this use case because it can generate recommendations for each user without requiring a list of candidate items. To filter out the items that the user previously purchased, a real-time filter can be created and applied to the campaign. A real-time filter is a dynamic filter that uses the latest interaction data to exclude items from the recommendations. By using Amazon Personalize, the development effort is minimized because it handles the data processing, model training, and deployment automatically. The web application can use the GetRecommendations API operation to get the real-time recommendations from the campaign.References:

Amazon Personalize

What is Amazon Personalize?

USER_PERSONALIZATION recipe

PERSONALIZED_RANKING recipe

Filtering recommendations

GetRecommendations API operation

asked 16/09/2024
Epitacio Neto
30 questions
User
Your answer:
0 comments
Sorted by

Leave a comment first