List of questions
Related questions
Question 238 - MLS-C01 discussion
An ecommerce company has used Amazon SageMaker to deploy a factorization machines (FM) model to suggest products for customers. The company's data science team has developed two new models by using the TensorFlow and PyTorch deep learning frameworks. The company needs to use A/B testing to evaluate the new models against the deployed model.
...required A/B testing setup is as follows:
* Send 70% of traffic to the FM model, 15% of traffic to the TensorFlow model, and 15% of traffic to the Py Torch model.
* For customers who are from Europe, send all traffic to the TensorFlow model
..sh architecture can the company use to implement the required A/B testing setup?
A.
Create two new SageMaker endpoints for the TensorFlow and PyTorch models in addition to the existing SageMaker endpoint. Create an Application Load Balancer Create a target group for each endpoint. Configure listener rules and add weight to the target groups. To send traffic to the TensorFlow model for customers who are from Europe, create an additional listener rule to forward traffic to the TensorFlow target group.
B.
Create two production variants for the TensorFlow and PyTorch models. Create an auto scaling policy and configure the desired A/B weights to direct traffic to each production variant Update the existing SageMaker endpoint with the auto scaling policy. To send traffic to the TensorFlow model for customers who are from Europe, set the TargetVariant header in the request to point to the variant name of the TensorFlow model.
C.
Create two new SageMaker endpoints for the TensorFlow and PyTorch models in addition to the existing SageMaker endpoint. Create a Network Load Balancer. Create a target group for each endpoint. Configure listener rules and add weight to the target groups. To send traffic to the TensorFlow model for customers who are from Europe, create an additional listener rule to forward traffic to the TensorFlow target group.
D.
Create two production variants for the TensorFlow and PyTorch models. Specify the weight for each production variant in the SageMaker endpoint configuration. Update the existing SageMaker endpoint with the new configuration. To send traffic to the TensorFlow model for customers who are from Europe, set the TargetVariant header in the request to point to the variant name of the TensorFlow model.
Your answer:
0 comments
Sorted by
Leave a comment first