List of questions
Related questions
Question 257 - MLS-C01 discussion
An ecommerce company has developed a XGBoost model in Amazon SageMaker to predict whether a customer will return a purchased item. The dataset is imbalanced. Only 5% of customers return items
A data scientist must find the hyperparameters to capture as many instances of returned items as possible. The company has a small budget for compute.
How should the data scientist meet these requirements MOST cost-effectively?
A.
Tune all possible hyperparameters by using automatic model tuning (AMT). Optimize on {'HyperParameterTuningJobObjective': {'MetricName': 'validation:accuracy', 'Type': 'Maximize'}}
B.
Tune the csv_weight hyperparameter and the scale_pos_weight hyperparameter by using automatic model tuning (AMT). Optimize on {'HyperParameterTuningJobObjective': {'MetricName': 'validation:f1', 'Type': 'Maximize'}}.
C.
Tune all possible hyperparameters by using automatic model tuning (AMT). Optimize on {'HyperParameterTuningJobObjective': {'MetricName': 'validation:f1', 'Type': 'Maximize'}}.
D.
Tune the csv_weight hyperparameter and the scale_pos_weight hyperparameter by using automatic model tuning (AMT). Optimize on {'HyperParameterTuningJobObjective': {'MetricName': 'validation:f1', 'Type': 'Minimize'}).
Your answer:
0 comments
Sorted by
Leave a comment first