ExamGecko
Question list
Search
Search

List of questions

Search

Related questions











Question 268 - MLS-C01 discussion

Report
Export

A data scientist is building a forecasting model for a retail company by using the most recent 5 years of sales records that are stored in a data warehouse. The dataset contains sales records for each of the company's stores across five commercial regions The data scientist creates a working dataset with StorelD. Region. Date, and Sales Amount as columns. The data scientist wants to analyze yearly average sales for each region. The scientist also wants to compare how each region performed compared to average sales across all commercial regions.

Which visualization will help the data scientist better understand the data trend?

A.
Create an aggregated dataset by using the Pandas GroupBy function to get average sales for each year for each store. Create a bar plot, faceted by year, of average sales for each store. Add an extra bar in each facet to represent average sales.
Answers
A.
Create an aggregated dataset by using the Pandas GroupBy function to get average sales for each year for each store. Create a bar plot, faceted by year, of average sales for each store. Add an extra bar in each facet to represent average sales.
B.
Create an aggregated dataset by using the Pandas GroupBy function to get average sales for each year for each store. Create a bar plot, colored by region and faceted by year, of average sales for each store. Add a horizontal line in each facet to represent average sales.
Answers
B.
Create an aggregated dataset by using the Pandas GroupBy function to get average sales for each year for each store. Create a bar plot, colored by region and faceted by year, of average sales for each store. Add a horizontal line in each facet to represent average sales.
C.
Create an aggregated dataset by using the Pandas GroupBy function to get average sales for each year for each region Create a bar plot of average sales for each region. Add an extra bar in each facet to represent average sales.
Answers
C.
Create an aggregated dataset by using the Pandas GroupBy function to get average sales for each year for each region Create a bar plot of average sales for each region. Add an extra bar in each facet to represent average sales.
D.
Create an aggregated dataset by using the Pandas GroupBy function to get average sales for each year for each region Create a bar plot, faceted by year, of average sales for each region Add a horizontal line in each facet to represent average sales.
Answers
D.
Create an aggregated dataset by using the Pandas GroupBy function to get average sales for each year for each region Create a bar plot, faceted by year, of average sales for each region Add a horizontal line in each facet to represent average sales.
Suggested answer: D

Explanation:

The best visualization for this task is to create a bar plot, faceted by year, of average sales for each region and add a horizontal line in each facet to represent average sales. This way, the data scientist can easily compare the yearly average sales for each region with the overall average sales and see the trends over time. The bar plot also allows the data scientist to see the relative performance of each region within each year and across years. The other options are less effective because they either do not show the yearly trends, do not show the overall average sales, or do not group the data by region.

References:

pandas.DataFrame.groupby --- pandas 2.1.4 documentation

pandas.DataFrame.plot.bar --- pandas 2.1.4 documentation

Matplotlib - Bar Plot - Online Tutorials Library

asked 16/09/2024
Roberto Garavaglia
45 questions
User
Your answer:
0 comments
Sorted by

Leave a comment first