ExamGecko
Question list
Search
Search

List of questions

Search

Related questions











Question 81 - AI-900 discussion

Report
Export

DRAG DROP

Match the machine learning tasks to the appropriate scenarios.

To answer, drag the appropriate task from the column on the left to its scenario on the right. Each task may be used once, more than once, or not at all.

NOTE: Each correct selection is worth one point.

Question 81
Correct answer: Question 81

Explanation:

Box 1: Model evaluation

The Model evaluation module outputs a confusion matrix showing the number of true positives, false negatives, false positives, and true negatives, as well as ROC, Precision/Recall, and Lift curves.

Box 2: Feature engineering

Feature engineering is the process of using domain knowledge of the data to create features that help ML algorithms learn better. In Azure Machine Learning, scaling and normalization techniques are applied to facilitate feature engineering. Collectively, these techniques and feature engineering are referred to as featurization.

Note: Often, features are created from raw data through a process of feature engineering. For example, a time stamp in itself might not be useful for modeling until the information is transformed into units of days, months, or categories that are relevant to the problem, such as holiday versus working day.

Box 3: Feature selection

In machine learning and statistics, feature selection is the process of selecting a subset of relevant, useful features to use in building an analytical model. Feature selection helps narrow the field of data to the most valuable inputs. Narrowing the field of data helps reduce noise and improve training performance.

Reference:

https://docs.microsoft.com/en-us/azure/machine-learning/studio/evaluate-model-performance

https://docs.microsoft.com/en-us/azure/machine-learning/concept-automated-ml

asked 26/09/2024
Ivan Dujmic
52 questions
User
0 comments
Sorted by

Leave a comment first