ExamGecko
Home Home / VMware / 2V0-41.23

VMware 2V0-41.23 Practice Test - Questions Answers, Page 2

Question list
Search
Search

When a stateful service is enabled for the first lime on a Tier-0 Gateway, what happens on the NSX Edge node'

A.
SR is instantiated and automatically connected with DR.
A.
SR is instantiated and automatically connected with DR.
Answers
B.
DR Is instantiated and automatically connected with SR.
B.
DR Is instantiated and automatically connected with SR.
Answers
C.
SR and DR Is instantiated but requites manual connection.
C.
SR and DR Is instantiated but requites manual connection.
Answers
D.
SR and DR doesn't need to be connected to provide any stateful services.
D.
SR and DR doesn't need to be connected to provide any stateful services.
Answers
Suggested answer: A

Explanation:

The answer is A. SR is instantiated and automatically connected with DR.

SR stands for Service Router and DR stands for Distributed Router. They are components of the NSX Edge node that provide different functions1

The SR is responsible for providing stateful services such as NAT, firewall, load balancing, VPN, and DHCP. The DR is responsible for providing distributed routing and switching between logical segments and the physical network1

When a stateful service is enabled for the first time on a Tier-0 Gateway, the NSX Edge node automatically creates an SR instance and connects it with the existing DR instance. This allows the stateful service to be applied to the traffic that passes through the SR before reaching the DR2

According to the VMware NSX 4.x Professional Exam Guide, understanding the SR and DR components and their functions is one of the exam objectives3

To learn more about the SR and DR components and how they work on the NSX Edge node, you can refer to the following resources:

VMware NSX Documentation: NSX Edge Components 1

VMware NSX 4.x Professional: NSX Edge Architecture

VMware NSX 4.x Professional: NSX Edge Routing

A company Is deploying NSX micro-segmentation in their vSphere environment to secure a simple application composed of web. app, and database tiers.

The naming convention will be:

* WKS-WEB-SRV-XXX

* WKY-APP-SRR-XXX

* WKI-DB-SRR-XXX

What is the optimal way to group them to enforce security policies from NSX?

A.
Use Edge as a firewall between tiers.
A.
Use Edge as a firewall between tiers.
Answers
B.
Do a service insertion to accomplish the task.
B.
Do a service insertion to accomplish the task.
Answers
C.
Group all by means of tags membership.
C.
Group all by means of tags membership.
Answers
D.
Create an Ethernet based security policy.
D.
Create an Ethernet based security policy.
Answers
Suggested answer: C

Explanation:

The answer is C. Group all by means of tags membership.

Tags are metadata that can be applied to physical servers, virtual machines, logical ports, and logical segments in NSX. Tags can be used for dynamic security group membership, which allows for granular and flexible enforcement of security policies based on various criteria1

In the scenario, the company is deploying NSX micro-segmentation to secure a simple application composed of web, app, and database tiers. The naming convention will be:

WKS-WEB-SRV-XXX

WKY-APP-SRR-XXX

WKI-DB-SRR-XXX

The optimal way to group them to enforce security policies from NSX is to use tags membership. For example, the company can create three tags: Web, App, and DB, and assign them to the corresponding VMs based on their names. Then, the company can create three security groups: Web-SG, App-SG, and DB-SG, and use the tags as the membership criteria. Finally, the company can create and apply security policies to the security groups based on the desired rules and actions2

Using tags membership has several advantages over the other options:

It is more scalable and dynamic than using Edge as a firewall between tiers. Edge firewall is a centralized solution that can create bottlenecks and performance issues when handling large amounts of traffic3

It is more simple and efficient than doing a service insertion to accomplish the task. Service insertion is a feature that allows for integrating third-party services with NSX, such as antivirus or intrusion prevention systems. Service insertion is not necessary for basic micro-segmentation and can introduce additional complexity and overhead.

It is more flexible and granular than creating an Ethernet based security policy. Ethernet based security policy is a type of policy that uses MAC addresses as the source or destination criteria. Ethernet based security policy is limited by the scope of layer 2 domains and does not support logical constructs such as segments or groups.

To learn more about tags membership and how to use it for micro-segmentation in NSX, you can refer to the following resources:

VMware NSX Documentation: Security Tag 1

VMware NSX Micro-segmentation Day 1: Chapter 4 - Security Policy Design 2

VMware NSX 4.x Professional: Security Groups

VMware NSX 4.x Professional: Security Policies

When collecting support bundles through NSX Manager, which files should be excluded for potentially containing sensitive information?

A.
Controller Files
A.
Controller Files
Answers
B.
Management Files
B.
Management Files
Answers
C.
Core Files
C.
Core Files
Answers
D.
Audit Files
D.
Audit Files
Answers
Suggested answer: C

Explanation:

According to the VMware NSX Documentation1, core files and audit logs can contain sensitive information and should be excluded from the support bundle unless requested by VMware technical support. Controller files and management files are not mentioned as containing sensitive information.

Core files and Audit logs might contain sensitive information such as passwords or encryption keys. https://docs.vmware.com/en/VMware-NSX/4.1/administration/GUID-73D9AF0D-4000-4EF2-AC66-6572AD1A0B30.html

Which three of the following describe the Border Gateway Routing Protocol (BGP) configuration on a Tier-0 Gateway? (Choose three.)

A.
Can be used as an Exterior Gateway Protocol.
A.
Can be used as an Exterior Gateway Protocol.
Answers
B.
It supports a 4-byte autonomous system number.
B.
It supports a 4-byte autonomous system number.
Answers
C.
The network is divided into areas that are logical groups.
C.
The network is divided into areas that are logical groups.
Answers
D.
EIGRP Is disabled by default.
D.
EIGRP Is disabled by default.
Answers
E.
BGP is enabled by default.
E.
BGP is enabled by default.
Answers
Suggested answer: A, B, D

Explanation:

A) Can be used as an Exterior Gateway Protocol. This is correct. BGP is a protocol that can be used to exchange routing information between different autonomous systems (AS). An AS is a network or a group of networks under a single administrative control. BGP can be used as an Exterior Gateway Protocol (EGP) to connect an AS to other ASes on the internet or other external networks1

B) It supports a 4-byte autonomous system number. This is correct. BGP supports both 2-byte and 4-byte AS numbers. A 2-byte AS number can range from 1 to 65535, while a 4-byte AS number can range from 65536 to 4294967295. NSX supports both 2-byte and 4-byte AS numbers for BGP configuration on a Tier-0 Gateway2

C) The network is divided into areas that are logical groups. This is incorrect. This statement describes OSPF, not BGP. OSPF is another routing protocol that operates within a single AS and divides the network into areas to reduce routing overhead and improve scalability. BGP does not use the concept of areas, but rather uses attributes, policies, and filters to control the routing decisions and traffic flow3

D) FIGRP Is disabled by default. This is correct. FIGRP stands for Fast Interior Gateway Routing Protocol, which is an enhanced version of IGRP, an obsolete routing protocol developed by Cisco. FIGRP is not supported by NSX and is disabled by default on a Tier-0 Gateway.

E) BGP is enabled by default. This is incorrect. BGP is not enabled by default on a Tier-0 Gateway. To enable BGP, you need to configure the local AS number and the BGP neighbors on the Tier-0 Gateway using the NSX Manager UI or API.

To learn more about BGP configuration on a Tier-0 Gateway in NSX, you can refer to the following resources:

VMware NSX Documentation: Configure BGP 1

VMware NSX 4.x Professional: BGP Configuration

VMware NSX 4.x Professional: BGP Troubleshooting

Which three NSX Edge components are used for North-South Malware Prevention? (Choose three.)

A.
Thin Agent
A.
Thin Agent
Answers
B.
RAPID
B.
RAPID
Answers
C.
Security Hub
C.
Security Hub
Answers
D.
IDS/IPS
D.
IDS/IPS
Answers
E.
Security Analyzer
E.
Security Analyzer
Answers
F.
Reputation Service
F.
Reputation Service
Answers
Suggested answer: B, C, D

Explanation:

https://docs.vmware.com/en/VMware-NSX/4.1/administration/GUID-69DF70C2-1769-4858-97E7-B757CAED08F0.html#:~:text=On%20the%20north%2Dsouth%20traffic,Guest%20Introspection%20(GI)%20platform.

The main components on the edge node for north-south malware prevention perform the following functions:

* IDS/IPS engine: Extracts files and relays events and data to the security hub

North-south malware prevention uses the file extraction features of the IDS/IPS engine that runs on NSX Edge for north-south traffic.

* Security hub: Collects file events, obtains verdicts for known files, sends files for local and cloud-based analysis, and sends information to the security analyzer

* RAPID: Provides local analysis of the file

* ASDS Cache: Caches reputation and verdicts of known files

Which two statements are true about IDS Signatures? (Choose two.)

A.
Users can upload their own IDS signature definitions.
A.
Users can upload their own IDS signature definitions.
Answers
B.
An IDS signature contains data used to identify known exploits and vulnerabilities.
B.
An IDS signature contains data used to identify known exploits and vulnerabilities.
Answers
C.
An IDS signature contains data used to identify the creator of known exploits and vulnerabilities.
C.
An IDS signature contains data used to identify the creator of known exploits and vulnerabilities.
Answers
D.
IDS signatures can be High Risk, Suspicious, Low Risk and Trustworthy.
D.
IDS signatures can be High Risk, Suspicious, Low Risk and Trustworthy.
Answers
E.
An IDS signature contains a set of instructions that determine which traffic is analyzed.
E.
An IDS signature contains a set of instructions that determine which traffic is analyzed.
Answers
Suggested answer: B, E

Explanation:

According to the Network Bachelor article1, an IDS signature contains data used to identify an attacker's attempt to exploit a known vulnerability in both the operating system and applications. This implies that statement B is true.According to the VMware NSX Documentation2, IDS/IPS Profiles are used to group signatures, which can then be applied to select applications and traffic. This implies that statement E is true.Statement A is false because users cannot upload their own IDS signature definitions, they have to use the ones provided by VMware or Trustwave3. Statement C is false because an IDS signature does not contain data used to identify the creator of known exploits and vulnerabilities, only the exploits and vulnerabilities themselves.Statement D is false because IDS signatures are classified into one of the following severity categories: Critical, High, Medium, Low, or Informational1.

Which NSX CLI command is used to change the authentication policy for local users?

A.
Set cli-timeout
A.
Set cli-timeout
Answers
B.
Get auth-policy minimum-password-length
B.
Get auth-policy minimum-password-length
Answers
C.
Set hardening- policy
C.
Set hardening- policy
Answers
D.
Set auth-policy
D.
Set auth-policy
Answers
Suggested answer: D

Explanation:

According to the VMware NSX Documentation4, the set auth-policy command is used to change the authentication policy settings for local users, such as password length, lockout period, and maximum authentication failures. The other commands are either used to view the authentication policy settings (B), change the CLI session timeout (A), or change the hardening policy settings .

https://docs.vmware.com/en/VMware-NSX/4.1/administration/GUID-99BAED85-D754-4589-9050-72A1AB528C10.html

Which statement is true about an alarm in a Suppressed state?

A.
An alarm can be suppressed for a specific duration in seconds.
A.
An alarm can be suppressed for a specific duration in seconds.
Answers
B.
An alarm can be suppressed for a specific duration in days.
B.
An alarm can be suppressed for a specific duration in days.
Answers
C.
An alarm can be suppressed for a specific duration in minutes.
C.
An alarm can be suppressed for a specific duration in minutes.
Answers
D.
An alarm can be suppressed for a specific duration in hours.
D.
An alarm can be suppressed for a specific duration in hours.
Answers
Suggested answer: D

Explanation:

An alarm can be suppressed for a specific duration in hours.

According to the VMware NSX documentation, an alarm can be in one of the following states: Open, Acknowledged, Suppressed, or Resolved12

An alarm in a Suppressed state means that the status reporting for this alarm has been disabled by the user for a user-specified duration12

When a user moves an alarm into a Suppressed state, they are prompted to specify the duration in hours. After the specified duration passes, the alarm state reverts to Open. However, if the system determines the condition has been corrected, the alarm state changes to Resolved13

To learn more about how to manage alarm states in NSX, you can refer to the following resources:

VMware NSX Documentation: Managing Alarm States 1

VMware NSX Documentation: View Alarm Information 2

VMware NSX Intelligence Documentation: Manage NSX Intelligence Alarm States 3

https://docs.vmware.com/en/VMware-NSX-Intelligence/1.2/user-guide/GUID-EBD3C5A8-F9AB-4A22-BA40-92D61850C1E6.html

How is the RouterLink port created between a Tier-1 Gateway and Tler-0 Gateway?

A.
Manually create a Logical Switch and connect to bother Tler-1 and Tier-0 Gateways.
A.
Manually create a Logical Switch and connect to bother Tler-1 and Tier-0 Gateways.
Answers
B.
Automatically created when Tler-1 is created.
B.
Automatically created when Tler-1 is created.
Answers
C.
Manually create a Segment and connect to both Titrr-1 and Tier-0 Gateways.
C.
Manually create a Segment and connect to both Titrr-1 and Tier-0 Gateways.
Answers
D.
Automatically created when Tier-t Is connected with Tier-0 from NSX UI.
D.
Automatically created when Tier-t Is connected with Tier-0 from NSX UI.
Answers
Suggested answer: D

Explanation:

According to the VMware NSX 4.x Professional documents and tutorials, a RouterLink port is a logical port that connects a Tier-1 gateway to a Tier-0 gateway. This port is automatically created when a Tier-1 gateway is associated with a Tier-0 gateway from the NSX UI or API. The RouterLink port enables routing between the two gateways and carries all the routing protocols and traffic.There is no need to manually create a logical switch or segment for this purpose1.

What are three NSX Manager roles? (Choose three.)

A.
master
A.
master
Answers
B.
cloud
B.
cloud
Answers
C.
zookeepet
C.
zookeepet
Answers
D.
manager
D.
manager
Answers
E.
policy
E.
policy
Answers
F.
controller
F.
controller
Answers
Suggested answer: D, E, F

Explanation:

According to the VMware NSX 4.x Professional documents and tutorials, an NSX Manager is a standalone appliance that hosts the API services, the management plane, control plane, and policy management.The NSX Manager has three built-in roles: policy, manager, and controller2. The policy role handles the declarative configuration of the system and translates it into desired state for the manager role. The manager role receives and validates the configuration from the policy role and stores it in a distributed persistent database. The manager role also publishes the configuration to the central control plane.The controller role implements the central control plane that computes the network state based on the configuration and topology information3. The other roles (master, cloud, and zookeeper) are not valid NSX Manager roles.

Total 107 questions
Go to page: of 11