Microsoft DP-100 Practice Test - Questions Answers, Page 3
List of questions
Related questions
You develop and train a machine learning model to predict fraudulent transactions for a hotel booking website.
Traffic to the site varies considerably. The site experiences heavy traffic on Monday and Friday and much lower traffic on other days. Holidays are also high web traffic days.
You need to deploy the model as an Azure Machine Learning real-time web service endpoint on compute that can dynamically scale up and down to support demand.
Which deployment compute option should you use?
HOTSPOT
You are a lead data scientist for a project that tracks the health and migration of birds. You create a multi-image classification deep learning model that uses a set of labeled bird photos collected by experts. You plan to use the model to develop a cross-platform mobile app that predicts the species of bird captured by app users.
You must test and deploy the trained model as a web service. The deployed model must meet the following requirements:
An authenticated connection must not be required for testing.
The deployed model must perform with low latency during inferencing.
The REST endpoints must be scalable and should have a capacity to handle large number of requests when multiple end users are using the mobile application.
You need to verify that the web service returns predictions in the expected JSON format when a valid REST request is submitted.
Which compute resources should you use? To answer, select the appropriate options in the answer area.
NOTE: Each correct selection is worth one point.
HOTSPOT
You deploy a model in Azure Container Instance.
You must use the Azure Machine Learning SDK to call the model API.
You need to invoke the deployed model using native SDK classes and methods.
How should you complete the command? To answer, select the appropriate options in the answer areas.
NOTE: Each correct selection is worth one point.
HOTSPOT
You use Azure Machine Learning to train and register a model.
You must deploy the model into production as a real-time web service to an inference cluster named service-compute that the IT department has created in the Azure Machine Learning workspace.
Client applications consuming the deployed web service must be authenticated based on their Azure Active Directory service principal.
You need to write a script that uses the Azure Machine Learning SDK to deploy the model. The necessary modules have been imported.
How should you complete the code? To answer, select the appropriate options in the answer area.
NOTE: Each correct selection is worth one point.
DRAG DROP
You use Azure Machine Learning to deploy a model as a real-time web service.
You need to create an entry script for the service that ensures that the model is loaded when the service starts and is used to score new data as it is received.
Which functions should you include in the script? To answer, drag the appropriate functions to the correct actions. Each function may be used once, more than once, or not at all. You may need to drag the split bar between panes or scroll to view content.
NOTE: Each correct selection is worth one point.
You use the designer to create a training pipeline for a classification model. The pipeline uses a dataset that includes the features and labels required for model training.
You create a real-time inference pipeline from the training pipeline. You observe that the schema for the generated web service input is based on the dataset and includes the label column that the model predicts. Client applications that use the service must not be required to submit this value.
You need to modify the inference pipeline to meet the requirement.
What should you do?
You use the Azure Machine Learning designer to create and run a training pipeline. You then create a real-time inference pipeline.
You must deploy the real-time inference pipeline as a web service.
What must you do before you deploy the real-time inference pipeline?
You create an Azure Machine Learning workspace named ML-workspace. You also create an Azure Databricks workspace named DB-workspace. DB-workspace contains a cluster named DB-cluster.
You must use DB-cluster to run experiments from notebooks that you import into DB-workspace.
You need to use ML-workspace to track MLflow metrics and artifacts generated by experiments running on DB-cluster. The solution must minimize the need for custom code.
What should you do?
HOTSPOT
You create an Azure Machine Learning workspace.
You need to detect data drift between a baseline dataset and a subsequent target dataset by using the DataDriftDetector class.
How should you complete the code segment? To answer, select the appropriate options in the answer area.
NOTE: Each correct selection is worth one point.
You are planning to register a trained model in an Azure Machine Learning workspace.
You must store additional metadata about the model in a key-value format. You must be able to add new metadata and modify or delete metadata after creation.
You need to register the model.
Which parameter should you use?
Question