ExamGecko
Question list
Search
Search

Question 19 - D-GAI-F-01 discussion

Report
Export

What is the primary purpose oi inferencing in the lifecycle of a Large Language Model (LLM)?

A.
To customize the model for a specific task by feeding it task-specific content
Answers
A.
To customize the model for a specific task by feeding it task-specific content
B.
To feed the model a large volume of data from a wide variety of subjects
Answers
B.
To feed the model a large volume of data from a wide variety of subjects
C.
To use the model in a production, research, or test environment
Answers
C.
To use the model in a production, research, or test environment
D.
To randomize all the statistical weights of the neural networks
Answers
D.
To randomize all the statistical weights of the neural networks
Suggested answer: C

Explanation:

Inferencing in the lifecycle of a Large Language Model (LLM) refers to using the model in practical applications. Here's an in-depth explanation:

Inferencing: This is the phase where the trained model is deployed to make predictions or generate outputs based on new input data. It is essentially the model's application stage.

Production Use: In production, inferencing involves using the model in live applications, such as chatbots or recommendation systems, where it interacts with real users.

Research and Testing: During research and testing, inferencing is used to evaluate the model's performance, validate its accuracy, and identify areas for improvement.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. Nature, 521(7553), 436-444.

Chollet, F. (2017). Deep Learning with Python. Manning Publications.

asked 16/09/2024
Peter Stones
39 questions
User
Your answer:
0 comments
Sorted by

Leave a comment first