List of questions
Related questions
Question 199 - DAS-C01 discussion
A company has a process that writes two datasets in CSV format to an Amazon S3 bucket every 6 hours. The company needs to join the datasets, convert the data to Apache Parquet, and store the data within another bucket for users to query using Amazon Athena. The data also needs to be loaded to Amazon Redshift for advanced analytics. The company needs a solution that is resilient to the failure of any individual job component and can be restarted in case of an error.
Which solution meets these requirements with the LEAST amount of operational overhead?
A.
Use AWS Step Functions to orchestrate an Amazon EMR cluster running Apache Spark. Use PySpark to generate data frames of the datasets in Amazon S3, transform the data, join the data, write the data back to Amazon S3, and load the data to Amazon Redshift.
B.
Create an AWS Glue job using Python Shell that generates dynamic frames of the datasets in Amazon S3, transforms the data, joins the data, writes the data back to Amazon S3, and loads the data to Amazon Redshift. Use an AWS Glue workflow to orchestrate the AWS Glue job at the desired frequency.
C.
Use AWS Step Functions to orchestrate the AWS Glue job. Create an AWS Glue job using Python Shell that creates dynamic frames of the datasets in Amazon S3, transforms the data, joins the data, writes the data back to Amazon S3, and loads the data to Amazon Redshift.
D.
Create an AWS Glue job using PySpark that creates dynamic frames of the datasets in Amazon S3, transforms the data, joins the data, writes the data back to Amazon S3, and loads the data to Amazon Redshift. Use an AWS Glue workflow to orchestrate the AWS Glue job.
Your answer:
0 comments
Sorted by
Leave a comment first