ExamGecko
Question list
Search
Search

List of questions

Search

Related questions











Question 51 - DP-100 discussion

Report
Export

DRAG DROP

You have a model with a large difference between the training and validation error values.

You must create a new model and perform cross-validation.

You need to identify a parameter set for the new model using Azure Machine Learning Studio.

Which module you should use for each step? To answer, drag the appropriate modules to the correct steps. Each module may be used once or more than once, or not at all. You may need to drag the split bar between panes or scroll to view content.

NOTE: Each correct selection is worth one point.


Question 51
Correct answer: Question 51

Explanation:

Box 1: Split data

Box 2: Partition and Sample

Box 3: Two-Class Boosted Decision Tree

Box 4: Tune Model Hyperparameters Integrated train and tune: You configure a set of parameters to use, and then let the module iterate over multiple combinations, measuring accuracy until it finds a "best" model. With most learner modules, you can choose which parameters should be changed during the training process, and which should remain fixed.

We recommend that you use Cross-Validate Model to establish the goodness of the model given the specified parameters. Use Tune Model Hyperparameters to identify the optimal parameters.

References:

https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/partition-and-sample

asked 02/10/2024
samuel crook
45 questions
User
0 comments
Sorted by

Leave a comment first