ExamGecko
Question list
Search
Search

List of questions

Search

Related questions











Question 55 - DP-100 discussion

Report
Export

HOTSPOT

A biomedical research company plans to enroll people in an experimental medical treatment trial.

You create and train a binary classification model to support selection and admission of patients to the trial. The model includes the following features: Age, Gender, and Ethnicity.

The model returns different performance metrics for people from different ethnic groups.

You need to use Fairlearn to mitigate and minimize disparities for each category in the Ethnicity feature.

Which technique and constraint should you use? To answer, select the appropriate options in the answer area.

NOTE: Each correct selection is worth one point.


Question 55
Correct answer: Question 55

Explanation:

Box 1: Grid Search

Fairlearn open-source package provides postprocessing and reduction unfairness mitigation algorithms: ExponentiatedGradient, GridSearch, and ThresholdOptimizer.

Note: The Fairlearn open-source package provides postprocessing and reduction unfairness mitigation algorithms types:

Reduction: These algorithms take a standard black-box machine learning estimator (e.g., a LightGBM model) and generate a set of retrained models using a sequence of re-weighted training datasets.

Post-processing: These algorithms take an existing classifier and the sensitive feature as input.

Box 2: Demographic parity

The Fairlearn open-source package supports the following types of parity constraints: Demographic parity, Equalized odds, Equal opportunity, and Bounded group loss.

Reference:

https://docs.microsoft.com/en-us/azure/machine-learning/concept-fairness-ml

asked 02/10/2024
Christodoulos Chiras
29 questions
User
0 comments
Sorted by

Leave a comment first