Google Professional Data Engineer Practice Test - Questions Answers, Page 34
List of questions
Related questions
You work for a large real estate firm and are preparing 6 TB of home sales data lo be used for machine learning You will use SOL to transform the data and use BigQuery ML lo create a machine learning model. You plan to use the model for predictions against a raw dataset that has not been transformed. How should you set up your workflow in order to prevent skew at prediction time?
You have a data pipeline with a Dataflow job that aggregates and writes time series metrics to Bigtable. You notice that data is slow to update in Bigtable. This data feeds a dashboard used by thousands of users across the organization. You need to support additional concurrent users and reduce the amount of time required to write the data. What should you do?
Choose 2 answers
One of your encryption keys stored in Cloud Key Management Service (Cloud KMS) was exposed. You need to re-encrypt all of your CMEK-protected Cloud Storage data that used that key. and then delete the compromised key. You also want to reduce the risk of objects getting written without customer-managed encryption key (CMEK protection in the future. What should you do?
You are designing the architecture of your application to store data in Cloud Storage. Your application consists of pipelines that read data from a Cloud Storage bucket that contains raw data, and write the data to a second bucket after processing. You want to design an architecture with Cloud Storage resources that are capable of being resilient if a Google Cloud regional failure occurs. You want to minimize the recovery point objective (RPO) if a failure occurs, with no impact on applications that use the stored data. What should you do?
You are using Workflows to call an API that returns a 1 KB JSON response, apply some complex business logic on this response, wait for the logic to complete, and then perform a load from a Cloud Storage file to BigQuery. The Workflows standard library does not have sufficient capabilities to perform your complex logic, and you want to use Python's standard library instead. You want to optimize your workflow for simplicity and speed of execution. What should you do?
You are using BigQuery with a regional dataset that includes a table with the daily sales volumes. This table is updated multiple times per day. You need to protect your sales table in case of regional failures with a recovery point objective (RPO) of less than 24 hours, while keeping costs to a minimum. What should you do?
Your infrastructure team has set up an interconnect link between Google Cloud and the on-premises network. You are designing a high-throughput streaming pipeline to ingest data in streaming from an Apache Kafka cluster hosted on-premises. You want to store the data in BigQuery, with as minima! latency as possible. What should you do?
Your organization uses a multi-cloud data storage strategy, storing data in Cloud Storage, and data in Amazon Web Services' (AWS) S3 storage buckets. All data resides in US regions. You want to query up-to-date data by using BigQuery. regardless of which cloud the data is stored in. You need to allow users to query the tables from BigQuery without giving direct access to the data in the storage buckets What should you do?
You have thousands of Apache Spark jobs running in your on-premises Apache Hadoop cluster. You want to migrate the jobs to Google Cloud. You want to use managed services to run your jobs instead of maintaining a long-lived Hadoop cluster yourself. You have a tight timeline and want to keep code changes to a minimum. What should you do?
You work for a farming company. You have one BigQuery table named sensors, which is about 500 MB and contains the list of your 5000 sensors, with columns for id, name, and location. This table is updated every hour. Each sensor generates one metric every 30 seconds along with a timestamp. which you want to store in BigQuery. You want to run an analytical query on the data once a week for monitoring purposes. You also want to minimize costs. What data model should you use?
Question