Google Professional Machine Learning Engineer Practice Test 3

One of your models is trained using data provided by a third-party data broker. The data broker does not reliably notify you of formatting changes in the data. You want to make your model training pipeline more robust to issues like this. What should you do?
TensorFlow Data Validation (TFDV) is a library that helps you understand, validate, and monitor your data for machine learning. It can automatically detect and report schema anomalies, such as missing features, new features, or different data types, in your data. It can also generate descriptive statistics and data visualizations to help you explore and debug your data. TFDV can be integrated with your model training pipeline to ensure data quality and consistency throughout the machine learning lifecycle.Reference:
TensorFlow Data Validation
Data Validation | TensorFlow
Data Validation | Machine Learning Crash Course | Google Developers