ExamGecko
Question list
Search
Search

List of questions

Search

Related questions











Question 77 - DEA-C01 discussion

Report
Export

A data engineer uses Amazon Redshift to run resource-intensive analytics processes once every month. Every month, the data engineer creates a new Redshift provisioned cluster. The data engineer deletes the Redshift provisioned cluster after the analytics processes are complete every month. Before the data engineer deletes the cluster each month, the data engineer unloads backup data from the cluster to an Amazon S3 bucket.

The data engineer needs a solution to run the monthly analytics processes that does not require the data engineer to manage the infrastructure manually.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use Amazon Step Functions to pause the Redshift cluster when the analytics processes are complete and to resume the cluster to run new processes every month.

Answers
A.

Use Amazon Step Functions to pause the Redshift cluster when the analytics processes are complete and to resume the cluster to run new processes every month.

B.

Use Amazon Redshift Serverless to automatically process the analytics workload.

Answers
B.

Use Amazon Redshift Serverless to automatically process the analytics workload.

C.

Use the AWS CLI to automatically process the analytics workload.

Answers
C.

Use the AWS CLI to automatically process the analytics workload.

D.

Use AWS CloudFormation templates to automatically process the analytics workload.

Answers
D.

Use AWS CloudFormation templates to automatically process the analytics workload.

Suggested answer: B

Explanation:

Amazon Redshift Serverless is a new feature of Amazon Redshift that enables you to run SQL queries on data in Amazon S3 without provisioning or managing any clusters. You can use Amazon Redshift Serverless to automatically process the analytics workload, as it scales up and down the compute resources based on the query demand, and charges you only for the resources consumed. This solution will meet the requirements with the least operational overhead, as it does not require the data engineer to create, delete, pause, or resume any Redshift clusters, or to manage any infrastructure manually.You can use the Amazon Redshift Data API to run queries from the AWS CLI, AWS SDK, or AWS Lambda functions12.

The other options are not optimal for the following reasons:

A . Use Amazon Step Functions to pause the Redshift cluster when the analytics processes are complete and to resume the cluster to run new processes every month. This option is not recommended, as it would still require the data engineer to create and delete a new Redshift provisioned cluster every month, which can incur additional costs and time. Moreover, this option would require the data engineer to use Amazon Step Functions to orchestrate the workflow of pausing and resuming the cluster, which can add complexity and overhead.

C . Use the AWS CLI to automatically process the analytics workload. This option is vague and does not specify how the AWS CLI is used to process the analytics workload. The AWS CLI can be used to run queries on data in Amazon S3 using Amazon Redshift Serverless, Amazon Athena, or Amazon EMR, but each of these services has different features and benefits. Moreover, this option does not address the requirement of not managing the infrastructure manually, as the data engineer may still need to provision and configure some resources, such as Amazon EMR clusters or Amazon Athena workgroups.

D . Use AWS CloudFormation templates to automatically process the analytics workload. This option is also vague and does not specify how AWS CloudFormation templates are used to process the analytics workload. AWS CloudFormation is a service that lets you model and provision AWS resources using templates. You can use AWS CloudFormation templates to create and delete a Redshift provisioned cluster every month, or to create and configure other AWS resources, such as Amazon EMR, Amazon Athena, or Amazon Redshift Serverless. However, this option does not address the requirement of not managing the infrastructure manually, as the data engineer may still need to write and maintain the AWS CloudFormation templates, and to monitor the status and performance of the resources.

1: Amazon Redshift Serverless

2: Amazon Redshift Data API

: Amazon Step Functions

: AWS CLI

: AWS CloudFormation

asked 29/10/2024
Karanshah Gulati
44 questions
User
Your answer:
0 comments
Sorted by

Leave a comment first