ExamGecko
Home Home / Amazon / SAP-C02

Amazon SAP-C02 Practice Test - Questions Answers, Page 33

Question list
Search
Search

List of questions

Search

Related questions











A company is expanding. The company plans to separate its resources into hundreds of different AWS accounts in multiple AWS Regions. A solutions architect must recommend a solution that denies access to any operations outside of specifically designated Regions.

Which solution will meet these requirements?

A.
Create IAM roles for each account. Create IAM policies with conditional allow permissions that include only approved Regions for the accounts.
A.
Create IAM roles for each account. Create IAM policies with conditional allow permissions that include only approved Regions for the accounts.
Answers
B.
Create an organization in AWS Organizations. Create IAM users for each account. Attach a policy to each user to block access to Regions where an account cannot deploy infrastructure.
B.
Create an organization in AWS Organizations. Create IAM users for each account. Attach a policy to each user to block access to Regions where an account cannot deploy infrastructure.
Answers
C.
Launch an AWS Control Tower landing zone. Create OUs and attach SCPs that deny access to run services outside of the approved Regions.
C.
Launch an AWS Control Tower landing zone. Create OUs and attach SCPs that deny access to run services outside of the approved Regions.
Answers
D.
Enable AWS Security Hub in each account. Create controls to specify the Regions where an account can deploy infrastructure.
D.
Enable AWS Security Hub in each account. Create controls to specify the Regions where an account can deploy infrastructure.
Answers
Suggested answer: C

A company is migrating its legacy .NET workload to AWS. The company has a containerized setup that includes a base container image. The base image is tens of gigabytes in size because of legacy libraries and other dependencies. The company has images for custom developed components that are dependent on the base image.

The company will use Amazon Elastic Container Registry (Amazon ECR) as part of its solution on AWS.

Which solution will provide the LOWEST container startup time on AWS?

A.
Use Amazon ECR to store the base image and the images for the custom developed components. Use Amazon Elastic Container Service (Amazon ECS) on AWS Fargate to run the workload.
A.
Use Amazon ECR to store the base image and the images for the custom developed components. Use Amazon Elastic Container Service (Amazon ECS) on AWS Fargate to run the workload.
Answers
B.
Use Amazon ECR to store the base image and the images for the custom developed components. Use AWS App Runner to run the workload.
B.
Use Amazon ECR to store the base image and the images for the custom developed components. Use AWS App Runner to run the workload.
Answers
C.
Use Amazon ECR to store the images for the custom developed components. Create an AMI that contains the base image. Use Amazon Elastic Container Service (Amazon ECS) on Amazon EC2 instances that are based on the AMI to run the workload
C.
Use Amazon ECR to store the images for the custom developed components. Create an AMI that contains the base image. Use Amazon Elastic Container Service (Amazon ECS) on Amazon EC2 instances that are based on the AMI to run the workload
Answers
D.
Use Amazon ECR to store the images for the custom developed components. Create an AMI that contains the base image. Use Amazon Elastic Kubernetes Service (Amazon EKS) on AWS Fargate with the AMI to run the workload.
D.
Use Amazon ECR to store the images for the custom developed components. Create an AMI that contains the base image. Use Amazon Elastic Kubernetes Service (Amazon EKS) on AWS Fargate with the AMI to run the workload.
Answers
Suggested answer: C

A company has an application that uses an Amazon Aurora PostgreSQL DB cluster for the application's database. The DB cluster contains one small primary instance and three larger replica instances. The application runs on an AWS Lambda function. The application makes many short-lived connections to the database's replica instances to perform read-only operations.

During periods of high traffic, the application becomes unreliable and the database reports that too many connections are being established. The frequency of high-traffic periods is unpredictable.

Which solution will improve the reliability of the application?

A.
Use Amazon RDS Proxy to create a proxy for the DB cluster. Configure a read-only endpoint for the proxy. Update the Lambda function to connect to the proxy endpoint.
A.
Use Amazon RDS Proxy to create a proxy for the DB cluster. Configure a read-only endpoint for the proxy. Update the Lambda function to connect to the proxy endpoint.
Answers
B.
Increase the max_connections setting on the DB cluster's parameter group. Reboot all the instances in the DB cluster. Update the Lambda function to connect to the DB cluster endpoint.
B.
Increase the max_connections setting on the DB cluster's parameter group. Reboot all the instances in the DB cluster. Update the Lambda function to connect to the DB cluster endpoint.
Answers
C.
Configure instance scaling for the DB cluster to occur when the DatabaseConnections metric is close to the max _ connections setting. Update the Lambda function to connect to the Aurora reader endpoint.
C.
Configure instance scaling for the DB cluster to occur when the DatabaseConnections metric is close to the max _ connections setting. Update the Lambda function to connect to the Aurora reader endpoint.
Answers
D.
Use Amazon RDS Proxy to create a proxy for the DB cluster. Configure a read-only endpoint for the Aurora Data API on the proxy. Update the Lambda function to connect to the proxy endpoint.
D.
Use Amazon RDS Proxy to create a proxy for the DB cluster. Configure a read-only endpoint for the Aurora Data API on the proxy. Update the Lambda function to connect to the proxy endpoint.
Answers
Suggested answer: A

A company is migrating its infrastructure to the AWS Cloud. The company must comply with a variety of regulatory standards for different projects. The company needs a multi-account environment.

A solutions architect needs to prepare the baseline infrastructure. The solution must provide a consistent baseline of management and security, but it must allow flexibility for different compliance requirements within various AWS accounts. The solution also needs to integrate with the existing on-premises Active Directory Federation Services (AD FS) server.

Which solution meets these requirements with the LEAST amount of operational overhead?

A.
Create an organization in AWS Organizations. Create a single SCP for least privilege access across all accounts. Create a single OU for all accounts. Configure an IAM identity provider for federation with the on-premises AD FS server. Configure a central logging account with a defined process for log generating services to send log events to the central account. Enable AWS Config in the central account with conformance packs for all accounts.
A.
Create an organization in AWS Organizations. Create a single SCP for least privilege access across all accounts. Create a single OU for all accounts. Configure an IAM identity provider for federation with the on-premises AD FS server. Configure a central logging account with a defined process for log generating services to send log events to the central account. Enable AWS Config in the central account with conformance packs for all accounts.
Answers
B.
Create an organization in AWS Organizations. Enable AWS Control Tower on the organization. Review included controls (guardrails) for SCPs. Check AWS Config for areas that require additions. Add OUS as necessary. Connect AWS IAM Identity Center (AWS Single Sign-On) to the on-premises AD FS server.
B.
Create an organization in AWS Organizations. Enable AWS Control Tower on the organization. Review included controls (guardrails) for SCPs. Check AWS Config for areas that require additions. Add OUS as necessary. Connect AWS IAM Identity Center (AWS Single Sign-On) to the on-premises AD FS server.
Answers
C.
Create an organization in AWS Organizations. Create SCPs for least privilege access. Create an OU structure, and use it to group AWS accounts. Connect AWS IAM Identity Center (AWS Single Sign-On) to the on-premises AD FS server. Configure a central logging account with a defined process for log generating services to send log events to the central account. Enable AWS Config in the central account with aggregators and conformance packs.
C.
Create an organization in AWS Organizations. Create SCPs for least privilege access. Create an OU structure, and use it to group AWS accounts. Connect AWS IAM Identity Center (AWS Single Sign-On) to the on-premises AD FS server. Configure a central logging account with a defined process for log generating services to send log events to the central account. Enable AWS Config in the central account with aggregators and conformance packs.
Answers
D.
Create an organization in AWS Organizations. Enable AWS Control Tower on the organization. Review included controls (guardrails) for SCPs. Check AWS Config for areas that require additions. Configure an IAM identity provider for federation with the on-premises AD FS server.
D.
Create an organization in AWS Organizations. Enable AWS Control Tower on the organization. Review included controls (guardrails) for SCPs. Check AWS Config for areas that require additions. Configure an IAM identity provider for federation with the on-premises AD FS server.
Answers
Suggested answer: B

A company has a project that is launching Amazon EC2 instances that are larger than required. The project's account cannot be part of the company's organization in AWS Organizations due to policy restrictions to keep this activity outside of corporate IT. The company wants to allow only the launch of t3.small EC2 instances by developers in the project's account. These EC2 instances must be restricted to the us-east-2 Region.

What should a solutions architect do to meet these requirements?

A.
Create a new developer account. Move all EC2 instances, users, and assets into us-east-2. Add the account to the company's organization in AWS Organizations. Enforce a tagging policy that denotes Region affinity.
A.
Create a new developer account. Move all EC2 instances, users, and assets into us-east-2. Add the account to the company's organization in AWS Organizations. Enforce a tagging policy that denotes Region affinity.
Answers
B.
Create an SCP that denies the launch of all EC2 instances except t3.small EC2 instances in us-east-2. Attach the SCP to the project's account.
B.
Create an SCP that denies the launch of all EC2 instances except t3.small EC2 instances in us-east-2. Attach the SCP to the project's account.
Answers
C.
Create and purchase a t3.small EC2 Reserved Instance for each developer in us-east-2. Assign each developer a specific EC2 instance with their name as the tag.
C.
Create and purchase a t3.small EC2 Reserved Instance for each developer in us-east-2. Assign each developer a specific EC2 instance with their name as the tag.
Answers
D.
Create an IAM policy than allows the launch of only t3.small EC2 instances in us-east-2. Attach the policy to the roles and groups that the developers use in the project's account.
D.
Create an IAM policy than allows the launch of only t3.small EC2 instances in us-east-2. Attach the policy to the roles and groups that the developers use in the project's account.
Answers
Suggested answer: D

A company is running a workload that consists of thousands of Amazon EC2 instances. The workload is running in a VPC that contains several public subnets and private subnets. The public subnets have a route for 0.0.0.0/0 to an existing internet gateway. The private subnets have a route for 0.0.0.0/0 to an existing NAT gateway.

A solutions architect needs to migrate the entire fleet of EC2 instances to use IPv6. The EC2 instances that are in private subnets must not be accessible from the public internet.

What should the solutions architect do to meet these requirements?

A.
Update the existing VPC, and associate a custom IPv6 CIDR block with the VPC and all subnets. Update all the VPC route tables, and add a route for ::/0 to the internet gateway.
A.
Update the existing VPC, and associate a custom IPv6 CIDR block with the VPC and all subnets. Update all the VPC route tables, and add a route for ::/0 to the internet gateway.
Answers
B.
Update the existing VPC, and associate an Amazon-provided IPv6 CIDR block with the VPC and all subnets. Update the VPC route tables for all private subnets, and add a route for ::/0 to the NAT gateway.
B.
Update the existing VPC, and associate an Amazon-provided IPv6 CIDR block with the VPC and all subnets. Update the VPC route tables for all private subnets, and add a route for ::/0 to the NAT gateway.
Answers
C.
Update the existing VPC, and associate an Amazon-provided IPv6 CIDR block with the VPC and all subnets. Create an egress-only internet gateway. Update the VPC route tables for all private subnets, and add a route for ::/0 to the egress-only internet gateway.
C.
Update the existing VPC, and associate an Amazon-provided IPv6 CIDR block with the VPC and all subnets. Create an egress-only internet gateway. Update the VPC route tables for all private subnets, and add a route for ::/0 to the egress-only internet gateway.
Answers
D.
Update the existing VPC, and associate a custom IPv6 CIDR block with the VPC and all subnets. Create a new NAT gateway, and enable IPv6 support. Update the VPC route tables for all private subnets, and add a route for ::/0 to the IPv6-enabled NAT gateway.
D.
Update the existing VPC, and associate a custom IPv6 CIDR block with the VPC and all subnets. Create a new NAT gateway, and enable IPv6 support. Update the VPC route tables for all private subnets, and add a route for ::/0 to the IPv6-enabled NAT gateway.
Answers
Suggested answer: C

A Solutions Architect wants to make sure that only AWS users or roles with suitable permissions can access a new Amazon API Gateway endpoint. The Solutions Architect wants an end-to-end view of each request to analyze the latency of the request and create service maps.

How can the Solutions Architect design the API Gateway access control and perform request inspections?

A.
For the API Gateway method, set the authorization to AWS_IAM. Then, give the IAM user or role execute-api:Invoke permission on the REST API resource. Enable the API caller to sign requests with AWS Signature when accessing the endpoint. Use AWS X-Ray to trace and analyze user requests to API Gateway.
A.
For the API Gateway method, set the authorization to AWS_IAM. Then, give the IAM user or role execute-api:Invoke permission on the REST API resource. Enable the API caller to sign requests with AWS Signature when accessing the endpoint. Use AWS X-Ray to trace and analyze user requests to API Gateway.
Answers
B.
For the API Gateway resource, set CORS to enabled and only return the company's domain in Access-Control-Allow-Origin headers. Then, give the IAM user or role execute-api:Invoke permission on the REST API resource. Use Amazon CloudWatch to trace and analyze user requests to API Gateway.
B.
For the API Gateway resource, set CORS to enabled and only return the company's domain in Access-Control-Allow-Origin headers. Then, give the IAM user or role execute-api:Invoke permission on the REST API resource. Use Amazon CloudWatch to trace and analyze user requests to API Gateway.
Answers
C.
Create an AWS Lambda function as the custom authorizer, ask the API client to pass the key and secret when making the call, and then use Lambda to validate the key/secret pair against the IAM system. Use AWS X-Ray to trace and analyze user requests to API Gateway.
C.
Create an AWS Lambda function as the custom authorizer, ask the API client to pass the key and secret when making the call, and then use Lambda to validate the key/secret pair against the IAM system. Use AWS X-Ray to trace and analyze user requests to API Gateway.
Answers
D.
Create a client certificate for API Gateway. Distribute the certificate to the AWS users and roles that need to access the endpoint. Enable the API caller to pass the client certificate when accessing the endpoint. Use Amazon CloudWatch to trace and analyze user requests to API Gateway.
D.
Create a client certificate for API Gateway. Distribute the certificate to the AWS users and roles that need to access the endpoint. Enable the API caller to pass the client certificate when accessing the endpoint. Use Amazon CloudWatch to trace and analyze user requests to API Gateway.
Answers
Suggested answer: A

A North American company with headquarters on the East Coast is deploying a new web application running on Amazon EC2 in the us-east-1 Region. The application should dynamically scale to meet user demand and maintain resiliency. Additionally, the application must have disaster recover capabilities in an active-passive configuration with the us-west-1 Region.

Which steps should a solutions architect take after creating a VPC in the us-east-1 Region?

A.
Create a VPC in the us-west-1 Region. Use inter-Region VPC peering to connect both VPCs. Deploy an Application Load Balancer (ALB) spanning multiple Availability Zones (AZs) to the VPC in the us-east-1 Region. Deploy EC2 instances across multiple AZs in each Region as part of an Auto Scaling group spanning both VPCs and served by the ALB.
A.
Create a VPC in the us-west-1 Region. Use inter-Region VPC peering to connect both VPCs. Deploy an Application Load Balancer (ALB) spanning multiple Availability Zones (AZs) to the VPC in the us-east-1 Region. Deploy EC2 instances across multiple AZs in each Region as part of an Auto Scaling group spanning both VPCs and served by the ALB.
Answers
B.
Deploy an Application Load Balancer (ALB) spanning multiple Availability Zones (AZs) to the VPC in the us-east-1 Region. Deploy EC2 instances across multiple AZs as part of an Auto Scaling group served by the ALB. Deploy the same solution to the us-west-1 Region. Create an Amazon Route 53 record set with a failover routing policy and health checks enabled to provide high availability across both Regions.
B.
Deploy an Application Load Balancer (ALB) spanning multiple Availability Zones (AZs) to the VPC in the us-east-1 Region. Deploy EC2 instances across multiple AZs as part of an Auto Scaling group served by the ALB. Deploy the same solution to the us-west-1 Region. Create an Amazon Route 53 record set with a failover routing policy and health checks enabled to provide high availability across both Regions.
Answers
C.
Create a VPC in the us-west-1 Region. Use inter-Region VPC peering to connect both VPCs. Deploy an Application Load Balancer (ALB) that spans both VPCs. Deploy EC2 instances across multiple Availability Zones as part of an Auto Scaling group in each VPC served by the ALB. Create an Amazon Route 53 record that points to the ALB.
C.
Create a VPC in the us-west-1 Region. Use inter-Region VPC peering to connect both VPCs. Deploy an Application Load Balancer (ALB) that spans both VPCs. Deploy EC2 instances across multiple Availability Zones as part of an Auto Scaling group in each VPC served by the ALB. Create an Amazon Route 53 record that points to the ALB.
Answers
D.
Deploy an Application Load Balancer (ALB) spanning multiple Availability Zones (AZs) to the VPC in the us-east-1 Region. Deploy EC2 instances across multiple AZs as part of an Auto Scaling group served by the ALB. Deploy the same solution to the us-west-1 Region. Create separate Amazon Route 53 records in each Region that point to the ALB in the Region. Use Route 53 health checks to provide high availability across both Regions.
D.
Deploy an Application Load Balancer (ALB) spanning multiple Availability Zones (AZs) to the VPC in the us-east-1 Region. Deploy EC2 instances across multiple AZs as part of an Auto Scaling group served by the ALB. Deploy the same solution to the us-west-1 Region. Create separate Amazon Route 53 records in each Region that point to the ALB in the Region. Use Route 53 health checks to provide high availability across both Regions.
Answers
Suggested answer: B

A company hosts a data-processing application on Amazon EC2 instances. The application polls an Amazon Elastic File System (Amazon EFS) file system for newly uploaded files. When a new file is detected, the application extracts data from the file and runs logic to select a Docker container image to process the file. The application starts the appropriate container image and passes the file location as a parameter.

The data processing that the container performs can take up to 2 hours. When the processing is complete, the code that runs inside the container writes the file back to Amazon EFS and exits.

The company needs to refactor the application to eliminate the EC2 instances that are running the containers

Which solution will meet these requirements?

A.
Create an Amazon Elastic Container Service (Amazon ECS) cluster. Configure the processing to run as AWS Fargate tasks. Extract the container selection logic to run as an Amazon EventBridge rule that starts the appropriate Fargate task. Configure the EventBridge rule to run when files are added to the EFS file system.
A.
Create an Amazon Elastic Container Service (Amazon ECS) cluster. Configure the processing to run as AWS Fargate tasks. Extract the container selection logic to run as an Amazon EventBridge rule that starts the appropriate Fargate task. Configure the EventBridge rule to run when files are added to the EFS file system.
Answers
B.
Create an Amazon Elastic Container Service (Amazon ECS) cluster. Configure the processing to run as AWS Fargate tasks. Update and containerize the container selection logic to run as a Fargate service that starts the appropriate Fargate task. Configure an EFS event notification to invoke the Fargate service when files are added to the EFS file system.
B.
Create an Amazon Elastic Container Service (Amazon ECS) cluster. Configure the processing to run as AWS Fargate tasks. Update and containerize the container selection logic to run as a Fargate service that starts the appropriate Fargate task. Configure an EFS event notification to invoke the Fargate service when files are added to the EFS file system.
Answers
C.
Create an Amazon Elastic Container Service (Amazon ECS) cluster. Configure the processing to run as AWS Fargate tasks. Extract the container selection logic to run as an AWS Lambda function that starts the appropriate Fargate task. Migrate the storage of file uploads to an Amazon S3 bucket. Update the processing code to use Amazon S3. Configure an S3 event notification to invoke the Lambda function when objects are created.
C.
Create an Amazon Elastic Container Service (Amazon ECS) cluster. Configure the processing to run as AWS Fargate tasks. Extract the container selection logic to run as an AWS Lambda function that starts the appropriate Fargate task. Migrate the storage of file uploads to an Amazon S3 bucket. Update the processing code to use Amazon S3. Configure an S3 event notification to invoke the Lambda function when objects are created.
Answers
D.
Create AWS Lambda container images for the processing. Configure Lambda functions to use the container images. Extract the container selection logic to run as a decision Lambda function that invokes the appropriate Lambda processing function. Migrate the storage of file uploads to an Amazon S3 bucket. Update the processing code to use Amazon S3. Configure an S3 event notification to invoke the decision Lambda function when objects are created.
D.
Create AWS Lambda container images for the processing. Configure Lambda functions to use the container images. Extract the container selection logic to run as a decision Lambda function that invokes the appropriate Lambda processing function. Migrate the storage of file uploads to an Amazon S3 bucket. Update the processing code to use Amazon S3. Configure an S3 event notification to invoke the decision Lambda function when objects are created.
Answers
Suggested answer: D

A company runs a web application on AWS. The web application delivers static content from an Amazon S3 bucket that is behind an Amazon CloudFront distribution. The application serves dynamic content by using an Application Load Balancer (ALB) that distributes requests to a fleet of Amazon EC2 instances in Auto Scaling groups. The application uses a domain name setup in Amazon Route 53.

Some users reported occasional issues when the users attempted to access the website during peak hours. An operations team found that the ALB sometimes returned HTTP 503 Service Unavailable errors. The company wants to display a custom error message page when these errors occur. The page should be displayed immediately for this error code.

Which solution will meet these requirements with the LEAST operational overhead?

A.
Set up a Route 53 failover routing policy. Configure a health check to determine the status of the ALB endpoint and to fail over to the failover S3 bucket endpoint.
A.
Set up a Route 53 failover routing policy. Configure a health check to determine the status of the ALB endpoint and to fail over to the failover S3 bucket endpoint.
Answers
B.
Create a second CloudFront distribution and an S3 static website to host the custom error page. Set up a Route 53 failover routing policy. Use an active-passive configuration between the two distributions.
B.
Create a second CloudFront distribution and an S3 static website to host the custom error page. Set up a Route 53 failover routing policy. Use an active-passive configuration between the two distributions.
Answers
C.
Create a CloudFront origin group that has two origins. Set the ALB endpoint as the primary origin. For the secondary origin, set an S3 bucket that is configured to host a static website Set up origin failover for the CloudFront distribution. Update the S3 static website to incorporate the custom error page.
C.
Create a CloudFront origin group that has two origins. Set the ALB endpoint as the primary origin. For the secondary origin, set an S3 bucket that is configured to host a static website Set up origin failover for the CloudFront distribution. Update the S3 static website to incorporate the custom error page.
Answers
D.
Create a CloudFront function that validates each HTTP response code that the ALB returns. Create an S3 static website in an S3 bucket. Upload the custom error page to the S3 bucket as a failover. Update the function to read the S3 bucket and to serve the error page to the end users.
D.
Create a CloudFront function that validates each HTTP response code that the ALB returns. Create an S3 static website in an S3 bucket. Upload the custom error page to the S3 bucket as a failover. Update the function to read the S3 bucket and to serve the error page to the end users.
Answers
Suggested answer: C
Total 492 questions
Go to page: of 50