Amazon MLS-C01 Practice Test - Questions Answers, Page 12
List of questions
Related questions
A Machine Learning Specialist is preparing data for training on Amazon SageMaker The Specialist is transformed into a numpy .array, which appears to be negatively affecting the speed of the training
What should the Specialist do to optimize the data for training on SageMaker'?
A Machine Learning Specialist is training a model to identify the make and model of vehicles in images The Specialist wants to use transfer learning and an existing model trained on images of general objects The Specialist collated a large custom dataset of pictures containing different vehicle makes and models.
What should the Specialist do to initialize the model to re-train it with the custom data?
A Machine Learning Specialist is developing a custom video recommendation model for an application The dataset used to train this model is very large with millions of data points and is hosted in an Amazon S3 bucket The Specialist wants to avoid loading all of this data onto an Amazon SageMaker notebook instance because it would take hours to move and will exceed the attached 5 GB Amazon EBS volume on the notebook instance.
Which approach allows the Specialist to use all the data to train the model?
A Machine Learning Specialist is creating a new natural language processing application that processes a dataset comprised of 1 million sentences The aim is to then run Word2Vec to generate embeddings of the sentences and enable different types of predictions -
Here is an example from the dataset
'The quck BROWN FOX jumps over the lazy dog '
Which of the following are the operations the Specialist needs to perform to correctly sanitize and prepare the data in a repeatable manner? (Select THREE)
This graph shows the training and validation loss against the epochs for a neural network
The network being trained is as follows
* Two dense layers one output neuron
* 100 neurons in each layer
* 100 epochs
* Random initialization of weights
Which technique can be used to improve model performance in terms of accuracy in the validation set?
A manufacturing company asks its Machine Learning Specialist to develop a model that classifies defective parts into one of eight defect types. The company has provided roughly 100000 images per defect type for training During the injial training of the image classification model the Specialist notices that the validation accuracy is 80%, while the training accuracy is 90% It is known that human-level performance for this type of image classification is around 90%
What should the Specialist consider to fix this issue1?
Example Corp has an annual sale event from October to December. The company has sequential sales data from the past 15 years and wants to use Amazon ML to predict the sales for this year's upcoming event. Which method should Example Corp use to split the data into a training dataset and evaluation dataset?
A company is running a machine learning prediction service that generates 100 TB of predictions every day A Machine Learning Specialist must generate a visualization of the daily precision-recall curve from the predictions, and forward a read-only version to the Business team.
Which solution requires the LEAST coding effort?
A Machine Learning Specialist has built a model using Amazon SageMaker built-in algorithms and is not getting expected accurate results The Specialist wants to use hyperparameter optimization to increase the model's accuracy
Which method is the MOST repeatable and requires the LEAST amount of effort to achieve this?
IT leadership wants Jo transition a company's existing machine learning data storage environment to AWS as a temporary ad hoc solution The company currently uses a custom software process that heavily leverages SOL as a query language and exclusively stores generated csv documents for machine learning
The ideal state for the company would be a solution that allows it to continue to use the current workforce of SQL experts The solution must also support the storage of csv and JSON files, and be able to query over semi-structured data The following are high priorities for the company:
* Solution simplicity
* Fast development time
* Low cost
* High flexibility
What technologies meet the company's requirements?
Question