Google Professional Data Engineer Practice Test - Questions Answers, Page 20
List of questions
Related questions
You use a dataset in BigQuery for analysis. You want to provide third-party companies with access to the same dataset. You need to keep the costs of data sharing low and ensure that the data is current.
Which solution should you choose?
A shipping company has live package-tracking data that is sent to an Apache Kafka stream in real time. This is then loaded into BigQuery. Analysts in your company want to query the tracking data in BigQuery to analyze geospatial trends in the lifecycle of a package. The table was originally created with ingest-date partitioning. Over time, the query processing time has increased. You need to implement a change that would improve query performance in BigQuery. What should you do?
You are designing a data processing pipeline. The pipeline must be able to scale automatically as load increases. Messages must be processed at least once, and must be ordered within windows of 1 hour. How should you design the solution?
You need to set access to BigQuery for different departments within your company. Your solution should comply with the following requirements:
Each department should have access only to their data.
Each department will have one or more leads who need to be able to create and update tables and provide them to their team.
Each department has data analysts who need to be able to query but not modify data.
How should you set access to the data in BigQuery?
You operate a database that stores stock trades and an application that retrieves average stock price for a given company over an adjustable window of time. The data is stored in Cloud Bigtable where the datetime of the stock trade is the beginning of the row key. Your application has thousands of concurrent users, and you notice that performance is starting to degrade as more stocks are added.
What should you do to improve the performance of your application?
You are operating a Cloud Dataflow streaming pipeline. The pipeline aggregates events from a Cloud Pub/Sub subscription source, within a window, and sinks the resulting aggregation to a Cloud Storage bucket. The source has consistent throughput. You want to monitor an alert on behavior of the pipeline with Cloud Stackdriver to ensure that it is processing dat a. Which Stackdriver alerts should you create?
You currently have a single on-premises Kafka cluster in a data center in the us-east region that is responsible for ingesting messages from IoT devices globally. Because large parts of globe have poor internet connectivity, messages sometimes batch at the edge, come in all at once, and cause a spike in load on your Kafka cluster. This is becoming difficult to manage and prohibitively expensive. What is the Google-recommended cloud native architecture for this scenario?
You decided to use Cloud Datastore to ingest vehicle telemetry data in real time. You want to build a storage system that will account for the long-term data growth, while keeping the costs low. You also want to create snapshots of the data periodically, so that you can make a point-in-time (PIT) recovery, or clone a copy of the data for Cloud Datastore in a different environment. You want to archive these snapshots for a long time. Which two methods can accomplish this?
Choose 2 answers.
You need to create a data pipeline that copies time-series transaction data so that it can be queried from within BigQuery by your data science team for analysis. Every hour, thousands of transactions are updated with a new status. The size of the intitial dataset is 1.5 PB, and it will grow by 3 TB per day. The data is heavily structured, and your data science team will build machine learning models based on this dat a. You want to maximize performance and usability for your data science team. Which two strategies should you adopt? Choose 2 answers.
You are designing a cloud-native historical data processing system to meet the following conditions:
The data being analyzed is in CSV, Avro, and PDF formats and will be accessed by multiple analysis tools including Cloud Dataproc, BigQuery, and Compute Engine.
A streaming data pipeline stores new data daily.
Peformance is not a factor in the solution.
The solution design should maximize availability.
How should you design data storage for this solution?
Question