Google Professional Data Engineer Practice Test - Questions Answers, Page 25
List of questions
Related questions
You work for a large financial institution that is planning to use Dialogflow to create a chatbot for the company's mobile app You have reviewed old chat logs and lagged each conversation for intent based on each customer's stated intention for contacting customer service About 70% of customer requests are simple requests that are solved within 10 intents The remaining 30% of inquiries require much longer, more complicated requests Which intents should you automate first?
You want to rebuild your batch pipeline for structured data on Google Cloud You are using PySpark to conduct data transformations at scale, but your pipelines are taking over twelve hours to run To expedite development and pipeline run time, you want to use a serverless tool and SQL syntax You have already moved your raw data into Cloud Storage How should you build the pipeline on Google Cloud while meeting speed and processing requirements?
You are building a teal-lime prediction engine that streams files, which may contain Pll (personal identifiable information) data, into Cloud Storage and eventually into BigQuery You want to ensure that the sensitive data is masked but still maintains referential Integrity, because names and emails are often used as join keys How should you use the Cloud Data Loss Prevention API (DLP API) to ensure that the Pll data is not accessible by unauthorized individuals?
Your company is implementing a data warehouse using BigQuery, and you have been tasked with designing the data model You move your on-premises sales data warehouse with a star data schema to BigQuery but notice performance issues when querying the data of the past 30 days Based on Google's recommended practices, what should you do to speed up the query without increasing storage costs?
You are using Cloud Bigtable to persist and serve stock market data for each of the major indices. To serve the trading application, you need to access only the most recent stock prices that are streaming in How should you design your row key and tables to ensure that you can access the data with the most simple query?
You are testing a Dataflow pipeline to ingest and transform text files. The files are compressed gzip, errors are written to a dead-letter queue, and you are using Sidelnputs to join data You noticed that the pipeline is taking longer to complete than expected, what should you do to expedite the Dataflow job?
You are building a report-only data warehouse where the data is streamed into BigQuery via the streaming API Following Google's best practices, you have both a staging and a production table for the data How should you design your data loading to ensure that there is only one master dataset without affecting performance on either the ingestion or reporting pieces?
You are migrating your data warehouse to Google Cloud and decommissioning your on-premises data center Because this is a priority for your company, you know that bandwidth will be made available for the initial data load to the cloud.
The files being transferred are not large in number, but each file is 90 GB Additionally, you want your transactional systems to continually update the warehouse on Google Cloud in real time What tools should you use to migrate the data and ensure that it continues to write to your warehouse?
You need (o give new website users a globally unique identifier (GUID) using a service that takes in data points and returns a GUID This data is sourced from both internal and external systems via HTTP calls that you will make via microservices within your pipeline There will be tens of thousands of messages per second and that can be multithreaded, and you worry about the backpressure on the system How should you design your pipeline to minimize that backpressure?
You are migrating an application that tracks library books and information about each book, such as author or year published, from an on-premises data warehouse to BigQuery In your current relational database, the author information is kept in a separate table and joined to the book information on a common key Based on Google's recommended practice for schema design, how would you structure the data to ensure optimal speed of queries about the author of each book that has been borrowed?
Question