Google Professional Machine Learning Engineer Practice Test - Questions Answers, Page 12

List of questions
Question 111

You work on an operations team at an international company that manages a large fleet of on-premises servers located in few data centers around the world. Your team collects monitoring data from the servers, including CPU/memory consumption. When an incident occurs on a server, your team is responsible for fixing it. Incident data has not been properly labeled yet. Your management team wants you to build a predictive maintenance solution that uses monitoring data from the VMs to detect potential failures and then alerts the service desk team. What should you do first?
Question 112

You are developing an ML model that uses sliced frames from video feed and creates bounding boxes around specific objects. You want to automate the following steps in your training pipeline: ingestion and preprocessing of data in Cloud Storage, followed by training and hyperparameter tuning of the object model using Vertex AI jobs, and finally deploying the model to an endpoint. You want to orchestrate the entire pipeline with minimal cluster management. What approach should you use?
Question 113

You are training an object detection machine learning model on a dataset that consists of three million X-ray images, each roughly 2GB in size. You are using Vertex AI Training to run a custom training application on a Compute Engine instance with 32-cores, 128GB of RAM, and 1 NVIDIA P100 GPU. You notice that model training is taking a very long time. You want to decrease training time without sacrificing model performance. What should you do?
Question 114

You are a data scientist at an industrial equipment manufacturing company. You are developing a regression model to estimate the power consumption in the company's manufacturing plants based on sensor data collected from all of the plants. The sensors collect tens of millions of records every day. You need to schedule daily training runs for your model that use all the data collected up to the current date. You want your model to scale smoothly and require minimal development work. What should you do?
Question 115

You built a custom ML model using scikit-learn. Training time is taking longer than expected. You decide to migrate your model to Vertex AI Training, and you want to improve the model's training time. What should you try out first?
Question 116

You are an ML engineer at a travel company. You have been researching customers' travel behavior for many years, and you have deployed models that predict customers' vacation patterns. You have observed that customers' vacation destinations vary based on seasonality and holidays; however, these seasonal variations are similar across years. You want to quickly and easily store and compare the model versions and performance statistics across years. What should you do?
Question 117

You are an ML engineer at a manufacturing company. You need to build a model that identifies defects in products based on images of the product taken at the end of the assembly line. You want your model to preprocess the images with lower computation to quickly extract features of defects in products. Which approach should you use to build the model?
Question 118

You have successfully deployed to production a large and complex TensorFlow model trained on tabular data. You want to predict the lifetime value (LTV) field for each subscription stored in the BigQuery table named subscription. subscriptionPurchase in the project named my-fortune500-company-project.
You have organized all your training code, from preprocessing data from the BigQuery table up to deploying the validated model to the Vertex AI endpoint, into a TensorFlow Extended (TFX) pipeline. You want to prevent prediction drift, i.e., a situation when a feature data distribution in production changes significantly over time. What should you do?
Question 119

You recently developed a deep learning model using Keras, and now you are experimenting with different training strategies. First, you trained the model using a single GPU, but the training process was too slow. Next, you distributed the training across 4 GPUs using tf.distribute.MirroredStrategy (with no other changes), but you did not observe a decrease in training time. What should you do?
Question 120

You work for a gaming company that has millions of customers around the world. All games offer a chat feature that allows players to communicate with each other in real time. Messages can be typed in more than 20 languages and are translated in real time using the Cloud Translation API. You have been asked to build an ML system to moderate the chat in real time while assuring that the performance is uniform across the various languages and without changing the serving infrastructure.
You trained your first model using an in-house word2vec model for embedding the chat messages translated by the Cloud Translation API. However, the model has significant differences in performance across the different languages. How should you improve it?
Question