List of questions
Related questions
Question 277 - MLS-C01 discussion
A real-estate company is launching a new product that predicts the prices of new houses. The historical data for the properties and prices is stored in .csv format in an Amazon S3 bucket. The data has a header, some categorical fields, and some missing values. The company's data scientists have used Python with a common open-source library to fill the missing values with zeros. The data scientists have dropped all of the categorical fields and have trained a model by using the open-source linear regression algorithm with the default parameters.
The accuracy of the predictions with the current model is below 50%. The company wants to improve the model performance and launch the new product as soon as possible.
Which solution will meet these requirements with the LEAST operational overhead?
0 comments
Leave a comment first