Amazon MLS-C01 Practice Test - Questions Answers, Page 15
List of questions
Related questions
A financial services company is building a robust serverless data lake on Amazon S3. The data lake should be flexible and meet the following requirements:
* Support querying old and new data on Amazon S3 through Amazon Athena and Amazon Redshift Spectrum.
* Support event-driven ETL pipelines.
* Provide a quick and easy way to understand metadata.
Which approach meets trfese requirements?
A company's Machine Learning Specialist needs to improve the training speed of a time-series forecasting model using TensorFlow. The training is currently implemented on a single-GPU machine and takes approximately 23 hours to complete. The training needs to be run daily.
The model accuracy js acceptable, but the company anticipates a continuous increase in the size of the training data and a need to update the model on an hourly, rather than a daily, basis. The company also wants to minimize coding effort and infrastructure changes
What should the Machine Learning Specialist do to the training solution to allow it to scale for future demand?
A Machine Learning Specialist is required to build a supervised image-recognition model to identify a cat. The ML Specialist performs some tests and records the following results for a neural network-based image classifier:
Total number of images available = 1,000 Test set images = 100 (constant test set)
The ML Specialist notices that, in over 75% of the misclassified images, the cats were held upside down by their owners.
Which techniques can be used by the ML Specialist to improve this specific test error?
A Data Scientist is developing a machine learning model to classify whether a financial transaction is fraudulent. The labeled data available for training consists of 100,000 non-fraudulent observations and 1,000 fraudulent observations.
The Data Scientist applies the XGBoost algorithm to the data, resulting in the following confusion matrix when the trained model is applied to a previously unseen validation dataset. The accuracy of the model is 99.1%, but the Data Scientist has been asked to reduce the number of false negatives.
Which combination of steps should the Data Scientist take to reduce the number of false positive predictions by the model? (Select TWO.)
A Machine Learning Specialist is assigned a TensorFlow project using Amazon SageMaker for training, and needs to continue working for an extended period with no Wi-Fi access.
Which approach should the Specialist use to continue working?
A Data Scientist wants to gain real-time insights into a data stream of GZIP files. Which solution would allow the use of SQL to query the stream with the LEAST latency?
A Machine Learning Specialist must build out a process to query a dataset on Amazon S3 using Amazon Athena The dataset contains more than 800.000 records stored as plaintext CSV files Each record contains 200 columns and is approximately 1 5 MB in size Most queries will span 5 to 10 columns only
How should the Machine Learning Specialist transform the dataset to minimize query runtime?
A Machine Learning Specialist is developing a daily ETL workflow containing multiple ETL jobs The workflow consists of the following processes
* Start the workflow as soon as data is uploaded to Amazon S3
* When all the datasets are available in Amazon S3, start an ETL job to join the uploaded datasets with multiple terabyte-sized datasets already stored in Amazon S3
* Store the results of joining datasets in Amazon S3
* If one of the jobs fails, send a notification to the Administrator
Which configuration will meet these requirements?
An agency collects census information within a country to determine healthcare and social program needs by province and city. The census form collects responses for approximately 500 questions from each citizen
Which combination of algorithms would provide the appropriate insights? (Select TWO )
A large consumer goods manufacturer has the following products on sale
* 34 different toothpaste variants
* 48 different toothbrush variants
* 43 different mouthwash variants
The entire sales history of all these products is available in Amazon S3 Currently, the company is using custom-built autoregressive integrated moving average (ARIMA) models to forecast demand for these products The company wants to predict the demand for a new product that will soon be launched
Which solution should a Machine Learning Specialist apply?
Question