Amazon MLS-C01 Practice Test - Questions Answers, Page 18
List of questions
Related questions
A Machine Learning Specialist is attempting to build a linear regression model.
Given the displayed residual plot only, what is the MOST likely problem with the model?
A machine learning specialist works for a fruit processing company and needs to build a system that categorizes apples into three types. The specialist has collected a dataset that contains 150 images for each type of apple and applied transfer learning on a neural network that was pretrained on ImageNet with this dataset.
The company requires at least 85% accuracy to make use of the model.
After an exhaustive grid search, the optimal hyperparameters produced the following:
68% accuracy on the training set
67% accuracy on the validation set
What can the machine learning specialist do to improve the system's accuracy?
A company uses camera images of the tops of items displayed on store shelves to determine which items were removed and which ones still remain. After several hours of data labeling, the company has a total of
1,000 hand-labeled images covering 10 distinct items. The training results were poor.
Which machine learning approach fulfills the company's long-term needs?
A Data Scientist is developing a binary classifier to predict whether a patient has a particular disease on a series of test results. The Data Scientist has data on 400 patients randomly selected from the population. The disease is seen in 3% of the population.
Which cross-validation strategy should the Data Scientist adopt?
A technology startup is using complex deep neural networks and GPU compute to recommend the company's products to its existing customers based upon each customer's habits and interactions. The solution currently pulls each dataset from an Amazon S3 bucket before loading the data into a TensorFlow model pulled from the company's Git repository that runs locally. This job then runs for several hours while continually outputting its progress to the same S3 bucket. The job can be paused, restarted, and continued at any time in the event of a failure, and is run from a central queue.
Senior managers are concerned about the complexity of the solution's resource management and the costs involved in repeating the process regularly. They ask for the workload to be automated so it runs once a week, starting Monday and completing by the close of business Friday.
Which architecture should be used to scale the solution at the lowest cost?
A media company with a very large archive of unlabeled images, text, audio, and video footage wishes to index its assets to allow rapid identification of relevant content by the Research team. The company wants to use machine learning to accelerate the efforts of its in-house researchers who have limited machine learning expertise.
Which is the FASTEST route to index the assets?
A Machine Learning Specialist is working for an online retailer that wants to run analytics on every customer visit, processed through a machine learning pipeline. The data needs to be ingested by Amazon Kinesis Data Streams at up to 100 transactions per second, and the JSON data blob is 100 KB in size.
What is the MINIMUM number of shards in Kinesis Data Streams the Specialist should use to successfully ingest this data?
A Machine Learning Specialist is deciding between building a naive Bayesian model or a full Bayesian network for a classification problem. The Specialist computes the Pearson correlation coefficients between each feature and finds that their absolute values range between 0.1 to 0.95.
Which model describes the underlying data in this situation?
A Data Scientist is building a linear regression model and will use resulting p-values to evaluate the statistical significance of each coefficient. Upon inspection of the dataset, the Data Scientist discovers that most of the features are normally distributed. The plot of one feature in the dataset is shown in the graphic.
What transformation should the Data Scientist apply to satisfy the statistical assumptions of the linear regression model?
A Machine Learning Specialist is assigned to a Fraud Detection team and must tune an XGBoost model, which is working appropriately for test data. However, with unknown data, it is not working as expected. The existing parameters are provided as follows.
Which parameter tuning guidelines should the Specialist follow to avoid overfitting?
Question