Amazon MLS-C01 Practice Test - Questions Answers, Page 2
List of questions
Related questions
A company needs to quickly make sense of a large amount of data and gain insight from it. The data is in different formats, the schemas change frequently, and new data sources are added regularly. The company wants to use AWS services to explore multiple data sources, suggest schemas, and enrich and transform the data. The solution should require the least possible coding effort for the data flows and the least possible infrastructure management.
Which combination of AWS services will meet these requirements?
A company is converting a large number of unstructured paper receipts into images. The company wants to create a model based on natural language processing (NLP) to find relevant entities such as date, location, and notes, as well as some custom entities such as receipt numbers.
The company is using optical character recognition (OCR) to extract text for data labeling. However, documents are in different structures and formats, and the company is facing challenges with setting up the manual workflows for each document type. Additionally, the company trained a named entity recognition (NER) model for custom entity detection using a small sample size. This model has a very low confidence score and will require retraining with a large dataset.
Which solution for text extraction and entity detection will require the LEAST amount of effort?
A company is building a predictive maintenance model based on machine learning (ML). The data is stored in a fully private Amazon S3 bucket that is encrypted at rest with AWS Key Management Service (AWS KMS) CMKs. An ML specialist must run data preprocessing by using an Amazon SageMaker Processing job that is triggered from code in an Amazon SageMaker notebook. The job should read data from Amazon S3, process it, and upload it back to the same S3 bucket. The preprocessing code is stored in a container image in Amazon Elastic Container Registry (Amazon ECR). The ML specialist needs to grant permissions to ensure a smooth data preprocessing workflow.
Which set of actions should the ML specialist take to meet these requirements?
A data scientist has been running an Amazon SageMaker notebook instance for a few weeks. During this time, a new version of Jupyter Notebook was released along with additional software updates. The security team mandates that all running SageMaker notebook instances use the latest security and software updates provided by SageMaker.
How can the data scientist meet these requirements?
A retail company wants to update its customer support system. The company wants to implement automatic routing of customer claims to different queues to prioritize the claims by category.
Currently, an operator manually performs the category assignment and routing. After the operator classifies and routes the claim, the company stores the claim's record in a central database. The claim's record includes the claim's category.
The company has no data science team or experience in the field of machine learning (ML). The company's small development team needs a solution that requires no ML expertise.
Which solution meets these requirements?
A machine learning (ML) specialist is using Amazon SageMaker hyperparameter optimization (HPO) to improve a model's accuracy. The learning rate parameter is specified in the following HPO configuration:
During the results analysis, the ML specialist determines that most of the training jobs had a learning rate between 0.01 and 0.1. The best result had a learning rate of less than 0.01. Training jobs need to run regularly over a changing dataset. The ML specialist needs to find a tuning mechanism that uses different learning rates more evenly from the provided range between MinValue and MaxValue.
Which solution provides the MOST accurate result?
A manufacturing company wants to use machine learning (ML) to automate quality control in its facilities. The facilities are in remote locations and have limited internet connectivity. The company has 20 of training data that consists of labeled images of defective product parts. The training data is in the corporate on-premises data center.
The company will use this data to train a model for real-time defect detection in new parts as the parts move on a conveyor belt in the facilities. The company needs a solution that minimizes costs for compute infrastructure and that maximizes the scalability of resources for training. The solution also must facilitate the company's use of an ML model in the low-connectivity environments.
Which solution will meet these requirements?
A company has an ecommerce website with a product recommendation engine built in TensorFlow. The recommendation engine endpoint is hosted by Amazon SageMaker. Three compute-optimized instances support the expected peak load of the website.
Response times on the product recommendation page are increasing at the beginning of each month. Some users are encountering errors. The website receives the majority of its traffic between 8 AM and 6 PM on weekdays in a single time zone.
Which of the following options are the MOST effective in solving the issue while keeping costs to a minimum? (Choose two.)
A media company wants to create a solution that identifies celebrities in pictures that users upload. The company also wants to identify the IP address and the timestamp details from the users so the company can prevent users from uploading pictures from unauthorized locations.
Which solution will meet these requirements with LEAST development effort?
A retail company is ingesting purchasing records from its network of 20,000 stores to Amazon S3 by using Amazon Kinesis Data Firehose. The company uses a small, server-based application in each store to send the data to AWS over the internet. The company uses this data to train a machine learning model that is retrained each day. The company's data science team has identified existing attributes on these records that could be combined to create an improved model.
Which change will create the required transformed records with the LEAST operational overhead?
Question